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Identification of Potential COVID-19 Targets and Pathways 
Derivate from Various Phenolic Compounds from Chives 
(Allium schoenoprasum) by Using Network Pharmacology 
Approach

Iksen1 and Bayu Cakra Buana2

ABSTRACT: With the uncertainty of COVID-19 disease around the world, the discovery and development 
of novel treatments for COVID-19 becoming an emerging trend. Network pharmacology has been used for 
determining the potential targets from several diseases. This research mainly focused on the potential of Al-
lium schoenoprasum against COVID-19 based on a network pharmacology approach. The methods consist 
of target identification of the compounds, target identification  related to  COVID-19 disease, compound-tar-
get interaction network, protein-protein interaction network and gene ontology and pathway enrichment 
analysis. Fifthy three main targets obtained from the compound-COVID-19 were identified as main targets 
from the compounds with MMP9, MPO, TLR4, MMP2, CCNB1, AURKB, PLK1, TOP2A, ALOX5, and CD38 be-
coming the top 10 core targets. Phenolic compounds in Allium schoenoprasum may act as  anti-COVID-19 
through several inflammatory and immune response pathways. Based on these results, it seems that phenolic 
compounds in Allium schoenoprasum might act as anti-COVID-19 via network pharmacology approaches.
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1. Introduction

The COVID-19 pandemic of respiratory illnes–
ses was started in December 2019 by a new 
coronavirus known as Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2). SARS-
CoV-2 may have evolved (mutated) in an animal 
before causing sickness in people. Infections have 
spread quickly from the outbreak's start to create 
several epidemics that are occurring simultane-
ously around the world [1,2]. Around six hundred 
and thirty-five millions people were verified CO-
VID-19 cases and 6,593,723 COVID-19-related 
deaths had been documented globally as of the 
end of October 2022 [3]. 

It has been determined that the coronavirus 
is transferred through the air by droplets and vi-
rus particles generated when an infected person 
breathes, talks, laughs, sings, coughs, or sneezes. 
Small infectious particles can remain in the air 
and concentrate indoors, especially in areas with 
high human traffic and inadequate ventilation, 
while larger droplets may fall to the ground in a 
matter of seconds [4]. COVID-19 can cause any-
thing from a moderate fever and sore throat to 
catastrophic lung damage and multiple organ fai
lure, and ultimately death [5]. At this time, there 
are no effective medicines available that can ef-
fectively combat SARS-CoV-2 infection [6] This 
makes it all the more important to find new me
dicines to employ against COVID-19, especially 
from natural resources. Allium schoenoprasum, 
more commonly known as chives, is a member 
of the lily family (Liliaceae) and is indigenous to 
both Europe and Asia. Cultivation of this plant 
dates back at least 4,000 years in China and to the 
Middle Ages in Europe for use in food preparation 
and as a medicinal herb. These days, the leaves 
are commonly utilized in cooking because of their 
subtle onion flavor [7]. 

Several pharmacological investigations have 
reported that Allium schoenoprasum might act 
as an antioxidant, anti-lithogenic, antihyperten-
sion, antibacterial, antifungal, anticancer, and 
etc [8,12]. Allium schoenoprasum contains vari-
ous types of phenolic compounds which makes 

it one of the promising plants for drug develop-
ment [13,16]. However, the potential of Allium 
schoenoprasum as anti-Covid-19 has never been 
reported. In this study, we investigated the poten-
tial targets and pathways related to major pheno-
lic compounds from Allium schoenoprasum by 
using a promising computational study via net-
work pharmacological approaches.

2. Methods

2.1. Samples and preparation
Eight major phenolic compounds reported in 

Allium schoenoprasum were retrieved from lite–
rature mining such as gallic acid, p-Coumaric 
acid, ferulic acid, sinapic acid, kaempferol, 
isorhamnetin, quercetin, and rutin [13-16]. In 
addition, the chemical structures and SMILE 
information was collected from the PubChem 
database (https://pubchem.ncbi.nlm.nih.gov/).

2.2. Drug-likeness, pharmacokinetic, and toxicity     
prediction 

The drug-likeness properties of phenolic com-
pounds from Allium schoenoprasum were ana-
lyzed based on the Lipinski rule of 5, while the 
pharmacokinetic properties were based on AD-
MET prediction. Both drug-likeness and pharma-
cokinetics were investigated by using pkCSM tool 
prediction (https://biosig.lab.uq.edu.au/pkcsm/
prediction) [17]. Toxicity potential from the com-
pounds was analyzed by using ProTox-II (https://
tox-new.charite.de/protox_II/) [18]. All predic-
tions were conducted by inputting the SMILES 
code from each compound to each database of 
pkCSM and ProTox-II.

2.3. Identification of compound-target network 
interaction

The target of each compound was obtained 
via the swiss target prediction database (http://
www.swisstargetprediction.ch/?) [19] by using 
the SMILES code and using Homo sapiens as 
the species. All the predicted targets were 
downloaded in CSV format and deleted if they 
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were duplicates. The compound-target network 
was generated by using Cytoscape v3.8.2 [20] 
by importing all the integrated targets into the 
program.

2.4. COVID-19 related disease gene expression
The differential expression (DE) analysis can 

be employed to investigate genes associated 
with the disease's condition [21]. Whole blood 
transcriptomic data from Covid-19 patients were 
collected from the Gene Expression Omnibus 
GEO database which can be accessed from the 
online database (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE171110) with the 
identifier GSE171110. The data were assigned to 
Healthy and Infected according to the data sets' 
information. The data set was prepared using R 
Studio utilizing the basic function of R and EdgeR 
package [22]. First, the gene with a count lower 
than 10 counts per million (CPM) was filtered 
out. Afterward, the data were normalized using 
the trimmed mean of the M-values method [23]. 
Finally, differentially expressed genes were 
identified using classic edgeR. The results with 
P-value < 0.01, FDR < 0.05, and absolute value of 
LFC > 1 were chosen as differentially expressed 
genes [24,25].

2.5. Protein-protein interaction network
The intersection targets between Allium schoe–

noprasum and COVID-19 targets were uploaded 
to the online site of STRING version 11.5 (https://
string-db.org/) [26]. The protein type was set to 
“Homo sapiens” and a medium confidence level of 
0.4 was selected. The protein interaction network 
was obtained from the STRING system and the 
data analysis was imported into Cytoscape v3.9.1, 
for the identification of the top 10 core targets by 
using an additional CytoHubba plugin [27].

2.6. Gene ontology (GO) and Kyoto encyclopedia 
of genes and genomes (KEGG) pathway en–
richment analysis

The enrichment analysis of GO and KEGG was 
performed according to previously reported 
[6]. The GO studies were divided into several 

parameters including biological process, mole–
cular function, and cellular component while the 
KEGG pathway enrichment was conducted by 
using obtained data according to the compounds-
COVID-19 interaction. The bubble plot was gene–
rated by using R software.

3. Results and discussion

3.1. Drug-likeness, pharmacokinetic and toxicity 
prediction from the compounds

The total of 8 main phenolic compounds 
in Allium schoenoprasum were retrieved from 
literature mining namely gallic acid, p-Coumaric 
acid, ferulic acid, sinapic acid, kaempferol, isor–
hamnetin, quercetin, and rutin. The compound 
information is shown in Table 1. The drug-
likeness was represented by using  Lipinski’s rule 
of five, which is a prediction tool used to decide 
how a compound meets the pharmacological 
requirements for an oral drug that enters 
circulation and can have an active effect. As 
shown in Table 2, all the compounds fulfill the 
requirements of Lipinski’s rule of five except for 
rutin with 3 violations such as the molecular 
weight >500, hydrogen bond acceptors >10,  
and hydrogen bond donors >5. Moreover, the 
pharmacokinetic properties prediction showed 
that all compounds except rutin showed high GI 
absorption. Meanwhile, the Blood Brain Barrier 
(BBB) ability showed that all compounds are 
hard to penetrate the BBB. Toxicity prediction in 
Table 3 showed that all compounds were grouped 
in classes 3, 4, and 5 with the LD50 between 159-
5000 mg/kg. it was found that the majority of the 
compounds used for the network analysis were 
non-toxic, except for quercetin which might be 
toxic if swallowed (50 < LD50 ≤ 300 [18]. 

3.2. Target identification from compounds and 
COVID-19

The 8 main candidate compounds in Allium 
schoenoprasum were used for the target prediction. 
The Swiss Target Prediction database showed 
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No. Compounds Molecular formula PubChem CID Structure

1 Gallic acid C7H6O5 370

HO

HO

OH

O

OH

2 p-Coumaric acid C9H8O3 637542 O

OH

HO

3 Ferulic acid C10H10O4 445858

O

O

OH

HO

4 Sinapic acid C11H12O5 637775

O

HO

O

O

OH

5 Kaempferol C15H10O6 5280863 O

OHO

OH

OH

OH

6 Isorhamnetin C16H12O7 5281654

O

O

OHO

OH

OH

OH

7 Quercetin C15H10O7 5280343 O

OHO

OH

OH

OH

OH

8 Rutin C27H30O16 5280805

OO

O

O

O

O OH

OH

HO

OH

HO

HO

OH
HO

OH

OH

Table 1.  Compound information
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Compound MW Log 
P

Rotatable 
bonds

H-Accep-
tors 

H-Donors Surface 
Area

%GI 
absorp-
tion

Log 

BBB 

Hepatotoxicity

Gallic acid 170.12 0.50 1 4 4 67.14 43.37 -1.10 No

p-Coumaric acid 164.16 1.49 2 2 2 69.59 93.49 -0.23 No

Ferulic acid 194.19 1.50 3 3 2 81.07 93.69 -0.24 No

Sinapic acid 224.21 1.51 4 4 2 92.54 93.06 -0.25 No

Kaempferol 286.24 2.28 1 6 4 117.31 74.29 -0.94 No

Isorhamnetin 316.27 2.29 2 7 4 128.79 76.01 -1.14 No

Quercetin 302.24 1.99 1 7 5 122.11 77.21 -1.10 No

Rutin 610.52 -1.69 6 16 10 240.90 23.45 -1.90 No

Table 2. Drug likeness and pharmacokinetic profiles prediction

Compounds Toxicity class LD50 (mg/kg)
Gallic acid 4 2000

p-Coumaric acid 5 2850

Ferulic acid 4 1772

Sinapic acid 4 1772

Kaempferol 5 3919

Isorhamnetin 5 5000

Quercetin 3 159

Rutin 5 5000

Table 3. Toxicity classes and LD50 prediction

that a total of 190 potential targets were obtai–
ned from the compounds. To summarize the 
interaction between compounds and target, we 
generated the network by using Cytoscape v3.8.2 
as shown in Figure 1. Moreover, a total of 3429 
differentially expressed genes in COVID-19 were 
collected from the GEO database. As shown in 
Figure 2, a volcano plot was drawn to show the 
distribution of the differentially expressed genes. 
The significant upregulated and downregulated 
genes are represented with the red dots in the 
plot representing the significant expression, 
while the other color represents non-significant 
expression. We compared the target genes 
regulated by the active compounds in Allium 
schoenoprasum, and different genes in COVID-19, 
obtaining 53 common target genes (Figure 3A). 
Next, we investigated the gene expression from 

these 53 targets and showed that most target 
genes were upregulated in COVID-19 patients 
(Figure 3B). 

3.3. Protein-protein interaction network
To  determine which target is the most potential, 

we conduct the protein-protein network analysis 
by using the STRING database and generate the 
protein cluster by using Cytoscape v3.82. As 
shown in Figure 4A, a total of 53 nodes and 110 
edges as the interaction between each node. The 
average node degree is 4.15, while the average 
local clustering coefficient is 0.604. Among all 
the targets, only 6 targets (Endothelin-converting 
enzyme 1 (ECE1), Aldo-Keto Reductase Family 1 
Member B10 (AKR1B10), Fucosyltransferase 7 
(FUT7), Calcium/Calmodulin Dependent Protein 
Kinase Kinase 2 (CAMKK2), Lysine demethylase 
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Figure 1. Compound-target interaction network, White oval represents the targets, yellow oval repre-
sents gene related to inflammation while the gray oval represents the compounds

Figure 2. Differentially expressed genes in COVID-19 patients from differentially expressed genes (3429 
genes). The significantly expressed genes with log fold change lower than -1 or higher than 1 
are plotted in red. The blue plot shows genes that do not satisfy the minimum log fold change 
values. Other plots below the horizontal black dashed line are non-significantly different ex-
pressed genes, with a p-value higher than 0.01

	

6B (KDM6B), and Human Quinone Reductase 2 
(NQO2)) that were not formed the cluster with 
another target. The protein-protein interaction 
network formed 1 main protein cluster (Figure 4B) 
and 3 small protein clusters (Figure 4C). Among all 
the targets, Matrix metallopeptidase 9 (MMP9), 
Myeloperoxidase (MPO), Toll-like receptor 4 
(TLR4), Matrix metallopeptidase 2 (MMP2), Cy–
clin B1 (CCNB1), Aurora kinase B (AURKB), Polo-
like kinase 1 (PLK1), DNA topoisomerase IIα 

(TOP2A), Arachidonate 5-Lipoxygenase (ALOX5), 
and Cluster of differentiation 38 (CD38) were the 
most important target from the compounds in 
Allium schoenoprasum which are associated with 
the COVID-19. Of the top 10 main targets, mostly 
all the targets were related to inflammatory 
responses. As the most important target, both 
MMP-9 and MMP-2 during inflammatory res–
ponses play a significant role in breaking down 
the basement membrane surrounding blood vessels 

-L
og

10
 P

Log2 fold change
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Figure 4. Protein-protein interaction network. (A) PPI obtained from STRING database. (B) Main cluster 
of PPI. (C) Small cluster of PPI. (D) Top 10 most important target ranked by number of degree 
(Red/high to yellow/low)

Figure 3. (A)Venn diagram represents the intercept targets between compounds from Allium schoeno-
prasum and COVID-19. (B) Heat map of gene expression. The samples with high gene expres-
sion across samples are represented in red. The blue color shows that the gene expression 
within the sample is relatively low compared to other samples. In addition, the white color 
indicating the gene within the sample has an average expression level compared to other 
samples
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Figure 5. GO and KEGG enrichment analysis. (A) Biological process (B) Molecular function (C) Cellular 
component (D) KEGG pathway. The size of the dots represents the number of gene count

as well as the parenchymal extracellular matrix 
thereby facilitating leukocyte infiltration [28]. MPO 
which is a leukocyte-derived enzyme that produces 
the reactive oxygen species might contribute to 
tissue damage during inflammation [29]. The 
hyperactivation of TLR4 might facilitate the 
production of proinflammatory cytokines which 
mainly contributes to the severity of COVID-19 
[30]. Meanwhile, ALOX5 regulates the production 
of the inflammatory marker of COX-2 and plays 
a role in the severity of COVID-19, especially in 
hyperglycemic patients [31]. Over–expression of 
CD38 was associated with the hyperactivation of 
the immune system resulting in immune exhaustion 
and uncontrolled release of inflammatory cytokines 
[32]. It is suggested that MMP9, MPO, TLR4, MMP2, 
CCNB1, AURKB, PLK1, TOP2A, ALOX5, and CD38 
may be ten key targets for the anti-COVID-19 activity 
of selected compounds from Allium schoenoprasum.

3.4. Gene ontology and KEGG enrichment 
analysis

To further explore possible mechanisms of 
the 53 candidate targets for the treatment of 
COVID-19, R software with p<0.05 was used for 
generating the bubble plot for GO enrichment 
analysis with the candidate target and KEGG 
pathway analysis. Figure 5A-5C showed the 
parameter of biological process, molecular 
function, and cellular component, respectively. 
The biological process revealed that the response 
to oxidative stress is the main regulator in 
interacting with COVID-19. Molecular function 
showed that several types of binding and 
protein kinase activity might be related with 
the COVID-19 and compounds relation. Cellular 
component showed that the targets were mainly 
distributed in the several types of spindle and 
protein kinase complex. Figure 5D showed that 
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Figure 6. HIF-1 signaling as one potential target from Allium schoenoprasum

several majority pathways of serotonergic, 
p53, tryptophan, arachidonic acid, and HIF-1 
signaling might contribute to the inflammatory 
and immune response. Figure 6 showed one 
potential pathway which could become a target 
from the selected flavonoids from the Allium 
schoenoprasum. Apart from inflammation and 
immune regulation pathway, several pathways 
related to ovarian steroidogenesis, steroid bio–
synthesis, progesterone, and transcriptional mis–
regulation might be involved.

4. Conclusion

This study showed that 8 major phenolic com-
ponents in Allium schoenoprasum had potential 
anti-COVID-19 activity, involving 53 target genes 
related to COVID-19. MMP9, MPO, TLR4, MMP2, 
CCNB1, AURKB, PLK1, TOP2A, ALOX5, and CD38 
might be the core target in treatment of COVID-19. 
The obtained results revealed that the 8 major 

phenolic components in Allium schoenoprasum 
compounds may exert multiple mechanisms in 
regulating inflammatory and immune response, 
which indicates the potential of Allium schoeno-
prasum against COVID-19.
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