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total network cost was optimized to N144,315,000, balancing
economic and sustainability objectives. The study highlights the
viability of closed-loop supply chains in emerging markets,
emphasizing the role of stochastic optimization in managing demand
variability. Practical implications include strategies for enhancing
resource efficiency, reducing waste, and improving circular economy
practices in the beverage industry.

INTRODUCTION

Effective Supply Chain Management (SCM) is crucial in a volatile business environment
(Lambert, 2006; Mentzer, 2001). Moving beyond traditional efficiency, Sustainable Supply Chains
(SSCs) balance the Triple Bottom Line (Seuring & Miiller, 2008). A key evolution is the Closed-
Loop Supply Chain (CLSC), which integrates reverse logistics to minimize waste and align with
Circular Economy (CE) principles (Guide & Wassenhove, 2009). This is highly relevant in contexts
like Benin City, Nigeria, which faces a plastic waste crisis driven by urbanization and limited
infrastructure (Environmental Rights Action, 2021; Rafli et al., 2025).

While CLSCs are recognized as a key CE enabler (Abbasi et al., 2025), a research gap persists.
Existing models are often single-product, deterministic (Ebrahim et al., 2023; Abolghasem et al.,
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2023), and lack resilience for post-COVID realities (Ivanov & Keskin, 2023). This study addresses
these gaps by developing a multi-product, stochastic sustainable CLSC network for Benin City's
beverage industry, tackling facility location and material allocation under demand uncertainty to
provide a circularity blueprint for emerging markets.

Conceptual review

Supply chain networks face significant uncertainties from demand fluctuations, supply
disruptions, and cost volatility, necessitating robust planning. To address this, scenario-based
stochastic optimization has emerged as a key methodology. It enables decision-makers to evaluate
multiple future states and optimize network design under risk. This approach is particularly critical
for designing sustainable and resilient supply chains, as it allows for balancing economic,
environmental, and social objectives amid uncertainty.
Stochastic Modeling in Supply Chain Networks

Two-stage stochastic programming is a robust framework for Supply Chain Network Design
(SCND) under uncertainty. This is exemplified by Moheb-Alizadeh et al. (2021), who developed a
two-stage stochastic multi-objective model to optimize a sustainable Closed-Loop Supply Chain
(CLSC) under uncertainties in demand and facility efficiency, overcoming the limitations of
deterministic approaches. The literature on CLSCs has evolved from foundational models of
integrated forward and reverse logistics (Guide & Wassenhove, 2009; Pishvaee & Torabi, 2010) into
sophisticated frameworks that now incorporate the Circular Economy (CE) paradigm, advanced
stochastic programming, and robust solution algorithms, often in response to global disruptions.

Recent research has shifted Closed-Loop Supply Chain (CLSC) models towards being deeply
rooted in Circular Economy (CE) principles, framing CE as a core strategy for resilient, sustainable
supply chains (Abbasi et al., 2025). This is critical in emerging economies like Nigeria, where plastic
packaging presents both an environmental challenge and a resource recovery opportunity. While
several works employ a single-period model to address immediate operational challenges, the
literature trends toward dynamic, multi-period frameworks (Mardan et al., 2019; Goli & Tirkolaee,
2023) to better capture long-term circular dynamics. Furthermore, the social dimension of
sustainability is now being rigorously integrated, as seen in this study's use of a job-creation
indicator, aligning with multi-objective models that incorporate social goals like employment
(Pedram et al., 2017; Abbasi et al., 2025).
Advanced Handling of Uncertainty and Scenario-Generation

A critical aspect of robust Closed-Loop Supply Chain (CLSC) design is managing uncertainty.
While this study uses scenario-based stochastic optimization for demand uncertainty, contemporary
research employs more advanced techniques. These include Monte Carlo simulation for probabilistic
scenario generation (Zhalechian et al., 2016) and data-driven machine learning approaches for
predictive scenario creation (Abbasi et al., 2024). To address epistemic uncertainty in parameters
like costs, this study uses trapezoidal fuzzy numbers. Recent research advances this through hybrid
models combining robust optimization, fuzzy logic, and stochastic programming (Goli et al., 2023;
Tavana et al., 2022). Furthermore, the post-COVID era has highlighted the need for context-driven
scenario design, explicitly modeling disruption phases to enhance resilience (Ivanov & Keskin, 2023;
Abbeasi et al., 2025).
Algorithmic Solutions for Complex CLSC Models

A current trend in Closed-Loop Supply Chain (CLSC) optimization is the development
of hybrid algorithms. For instance, Abbasi et al. (2025) combine the Whale Optimization Algorithm
(WOA) with Simulated Annealing (SA) to balance global exploration and local exploitation. This
aligns with other successful hybrid approaches, such as those integrating Genetic Algorithms (GAs)
(Devika et al., 2014; Goli, 2024).

Furthermore, modern studies employ rigorous validation frameworks, utilizing multiple
performance metrics like the Number of Pareto Solutions (NPS), Mean Ideal Distance (MID), and
Spread of Non-dominated Solutions (SNS). The use of statistical tests and systematic parameter
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tuning methods like the Taguchi method (Abbasi et al., 2025) is now considered a best practice for
establishing methodological credibility.
Scenario-Based Approaches and Uncertainty Handling

Scenario-based optimization is a critical methodology for managing supply chain uncertainties
such as demand fluctuations and price volatility. This approach utilizes techniques like stochastic,
possibilistic, and robust programming to generate multiple future states, thereby enabling resilient
decision-making. The field demonstrates a progression from applying these methods individually, as
seen in the possibilistic programming for medical supply chains by Pishvaee et al. (2014) and the
stochastic modeling for closed-loop networks by Zhalechian et al. (2016), towards more
sophisticated hybrid models. These advanced frameworks combine methodologies to handle hybrid
uncertainties, exemplified by the integration of robust, stochastic, and possibilistic programming by
Dehrani et al. (2018) and the application of fuzzy stochastic programming by Tehrani and Gupta
(2021) to balance economic and environmental goals. A central challenge remains the accurate
representation of uncertainty, which is increasingly addressed through advanced scenario generation
techniques like Monte Carlo simulation.

RESEARCH METHODS

This study employed the case-study research design to optimize re-design an existing supply
chain network, and integrate the closed loop concept into the supply chain network. The populations
of the study involve all the facilities of the supply chain network of the Nigerian Bottling Company’s
products, and packaging bottles, polyethylene terephthalate (PET) in Nigeria. Facilities within the
south-south, south-east, and south west geopolitical zones of Nigeria, were selected due to the level
of demand product and usage of PET bottles in these areas, these facilities were used to scientifically
design a supply chain network for the company, and to synthesize sustainability in the SC network
within the city where the study was carried out. The network features included manufacturing and
re-manufacturing plants, distribution, and re-distribution centres, warehouses, inspection centres,
disposal centres, and disassembly centres. The study considered a time frame of 2024 for the study of
the forward deterministic network data. In addition, a scenario optimization approach was adopted
to generate the uncertain random parameters, in addition to the single time frame of sustainable
closed loop network data utilized in the study. Furthermore, a scenario optimization approach was
adopted to generate the uncertain random demand for the stochastic optimization. Furthermore,
this study employed the secondary data in its analysis. Data on total supply, manufacture, inventory,
transportation, distribution and re-distribution, disposal, inspection, repair, and remanufacture
quantity and capacity, reverse rates, as well as annual demand, was obtained from the reviewed
articles and annual reports. Finally, the mixed integer linear programming (MILP) technique was
used to formulate the multi objective optimization problem since output values of some variables are
expected to be in integers and some others in non-integer of continuous form that is, in fractional
form from the model. The developed mathematical model was solved through the General Algebraic
Modeling Systems (GAMS) studio 40.

The mathematical model is built upon several key assumptions. First, customer demands are
defined as fuzzy numbers to account for uncertainty, and all products produced and stored are
assumed to be free of defects. The supply network is structured so that all customer demands are met
either directly from factories or through warehouses. A critical recovery process is included, where
products entering Distribution Centers (DCs) have a probability of 8 of being recovered and a
probability of 1-8 of being disposed of. Furthermore, the fixed and variable costs for constructing
supply chain institutions are considered pre-determined but also fuzzy in nature. The model operates
in a multi-product context, distinguishing between green and non-green quality levels. To reflect
market segmentation, customers are categorized as either green or non-green based on their
consumption preferences, with green products being defined as those made from environmentally
friendly materials. Finally, the model allows for products to be manufactured in either green or non-
green modes in response to these specific customer demands.
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Single-Period Model: The use of a single-period framework is justified as it provides a foundational,
tactical blueprint for initial CLSC implementation. It captures the immediate operational trade-offs
without the added complexity of multi-period inventory dynamics, which is a suitable first step for a
case study in an emerging market context.

Fuzzy and Stochastic Demand: Representing demand through a hybrid fuzzy-stochastic approach is
justified as it captures two types of uncertainty: inherent randomness (addressed by scenarios) and
epistemic uncertainty due to a lack of precise historical data (addressed by fuzzy numbers). This is
particularly relevant in the volatile Nigerian market.

Pre-determined and Fuzzy Costs: Assuming fixed costs are pre-determined but fuzzy acknowledges
that while contractual agreements set baseline costs, factors like inflation, currency fluctuation, and
negotiation can introduce vagueness, which the fuzzy logic component helps to manage.

Products are Defect-Free in Forward Logistics: This assumption simplifies the model by focusing
reverse logistics solely on post-consumer returns, which constitute the vast majority of flows in the

beverage industry, rather than on defective returns from retailers.

Problem Description

The proposed framework incorporates mathematical equations designed to calculate optimal
values for key decision variables, including production rates, inter-echelon product flows, inventory
levels, and capacity constraints for warehouses and distribution centers (Table 1).

Table 1.

Model Variables and Parameters
Symbol Description
pEP Set of products (Coke, Fanta, Sprite, Big Cola, Eva)
qeQ Set of quality levels (Green, Non-Green)
fEF Set of potential factory locations
wew Set of potential warehouse locations
cecC Set of customer zones
iel Set of potential disassembly center (DC) locations
nenN Set of potential disposal center locations
SES Set of demand scenarios
tf eTF Set of transportation modes from factories
tweTw Set of transportation modes from warehouses
tk e TK Set of transportation modes from customers
Parameters
Symbol Description
Dpqcs Demand for product p of quality q from customer c in scenario s
T Probability of scenario s
7] Recovery rate (percentage of collected products suitable for remanufacturing)
FCy FC,, FC; Fixed cost of opening factory f, warehouse w, DC i
ch:;}d Variable production cost for product p, quality g at factory f
VCaf Variable remanufacturing cost for product p, quality q at factory f
TCruif, TCohctw Unit transportation cost between facilities via specific modes
Cap %?d' Cap;,f{}’ Production and remanufacturing capacity at factory f
Cap™h, Capflc Capacity of warehouse w and disassembly center i
E IZ;‘;”" E Irg}l Environmental impact ( CO,kg ) per unit operation (production, transport, etc.)
I w i Number of jobs created by opening facility f,w, i
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This non-deterministic, multi-objective model accounts for uncertainties in cost parameters
and customer demand by representing them as trapezoidal fuzzy numbers. To effectively handle
these uncertainties, the model employs a robust possibilistic programming approach (Table 2).

Table 2.
Decision Variables
Symbol Description
X5, Xy, X Binary variables: 1 if facility f,w, i is opened, else 0
YZtrzofd Continuous: Quantity of new product p, quality q produced at factory f
g";]‘r Continuous: Quantity of product p, quality q remanufactured at factory f
Flow ;“’I‘}w s Flow qf product p, quality q from factory f to warehouse w via mode tf in
scenario s
Flow WS Flow from warehouse w to customer ¢ via mode tw in scenario s

Flow gédts Flow of returned product from customer ¢ to DC i via mode tk in scenario s

Flow gﬂfts Flow of recovered materials from DC i to factory f via mode ti in scenario s
Flow ggim Flow of waste from DC i to disposal site n via mode tn in scenario s

The Stochastic Multi-Objective Mixed-Integer Linear Programming (SMILP) Model
The model is formulated with three objective functions, optimized simultaneously.
Objective 1: Minimize Total Expected Cost

MinZ; =TFC+TVC+TTC 1
Where:
Total Fixed Cost (TFC):
TFC=Z FCfo+Z FCWXW+2 FCX; 2
feF WEW i€l

Total Expected Variable Cost (TVC):

d d
TVC = z 7, z (veredyied +vemmyen ) + Z Vb, InVpqus + Z VS FlowS! s

SES p.a.f p.qw p.q,C,l
dis CI
Y e Fowgle 3
p,q,i c,tk

Total Expected Transportation Cost (TTC):

TTC = Z g Z TCryerFlowpy s + Z T CeewFlowpgices 4
SES 0,9.f W,tf D,q.wW,c,tw
+ Z TCcithlowgédts + Z TCl-ftiFlosz,Zifts + Z TCmmFlowl]
p.q.citk p.,q,if,ti p.q.intn

Objective 2: Minimize Total Expected Environmental Impact

MinZ, = TE = Z ns(EP + ED + ER + ET) 5

SES

Where:
EP=3%,4rf (E Igg}d Yzf;(}d + ElLygs 5‘;}1) (Impact from Production) 5a
ED =%pqi E Igési Yo F lowg{m-ts (Impact from Disassembly) 5b
ER = Zp,q,i,f,ti Ell.:irans . mdlf . FlowgljZifts 5c
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(Impact from Transport, calculated as rate X distance X flow for all arcs)
Objective 3: Maximize Total Expected Social Benefit (Job Creation)

MaxZ; = SB = Z JrXs + Z JwXw + Z i X; 6

fEF WEW i€l
Subject to the following constraints:

Demand Satisfaction Constraint:

Z Flowpqwcts = Dpges VP, 4, €, S 7

Production Capac1ty Constraints:
prod prod
Z (quf + 52‘}‘) < Cap,; XrVp,f .
q

rem rem

paf = Cappqr Xr VP Q. f
Warehouse Capacity and Flow Balance:

Z Invpqys < CapiyX,, Yw,s 9

Z Flowquwts Z Flowpqwcts vp,q,w,s 10
fitf ctw

Reverse Logistics and Recovery Balance:

Z Flowpqlfts 92 Flowpqats vp,q,i,s 11
f.ti ¢tk

Z Flowpyines = (1 — 9)2 Flowgacits VP, 4,1, S 12

ntn ctk

Disassembly Center Capacity:

Z Flow pieies < Cap X, Vi, s 13
p.q,ctk
Non-Negativity and Binary Constraints:

Ylfqu?d' Yr;;n' Flowgglj/’wts =>0Vp,q,f,w,tf,s

Xr, X, X; € (0,1} VS, w,i 1

The sustainable closed-loop supply chain model encompasses five primary components:

1. Production facilities (for both manufacturing and remanufacturing)
2. Warehousing facilities

3. Customer markets

4. Disassembly centers (DCs)

5. Waste disposal facilities

The model specifically tracks product movement patterns based on product condition and lifecycle

stage, with the following operational flows:

1. Forward Distribution: All newly manufactured and remanufactured products are distributed
through the forward supply chain network (from factories to warehouses, then to customers) to
fulfill market demand.

ii. Reverse Logistics & Disposition: End-of-life products collected from customers are transported
to disassembly centers (DCs). At these facilities, products undergo evaluation -reusable
components re-enter the manufacturing cycle, while non-recyclable materials are routed to
designated disposal facilities.

iii. Component Reintegration: Disassembled parts and materials suitable for reuse are

shipped from DCs back to manufacturing plants for reprocessing.
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iv. Dual Production System: Factories operate two parallel production streams:
a. Reassembly of recovered components from the reverse supply chain
b. Conventional manufacturing using virgin raw materials from suppliers

Scenario Generation

A critical component of the stochastic optimization model is the generation of plausible
demand scenarios that accurately capture the uncertainty inherent in the beverage market. This
study employed a two-stage process for scenario generation: first, the collection and analysis of
historical data to establish key statistical parameters; and second, the application of a moment-
matching method to construct a set of discrete scenarios that represent the range of possible future
demand states.
Data Sources for Demand Estimation

The primary data for characterizing demand uncertainty were derived from secondary sources.
Historical sales and demand data for the five products (Coke, Fanta, Sprite, Big Cola, and Eva) were
obtained from the reviewed annual reports of the Nigerian Bottling Company and relevant industry
publications cited in the literature. This data provided a time series sufficient for estimating the
central tendency and variability of demand for each product. The mean demand u, and standard
deviation oy, for each product p, as presented in Table 4 and Table 5, were calculated directly from
this historical dataset. These parameters form the statistical foundation for the scenario generation
process.
The Moment-Matching Method for Scenario Creation

To translate the continuous demand distributions into a finite set of scenarios suitable for the
Stochastic Mixed-Integer Linear Programming (SMILP) model, the moment-matching method was
utilized. This technique generates a discrete set of scenarios whose first and second statistical
moments (mean and variance/covariance) match those of the original historical data. This ensures
that the scenarios are statistically representative of the observed demand uncertainty.
The process was implemented as follows:
Define Target Moments: For each product, the target moments were defined as the historical
mean W, and standard deviation g,.
Generate Scenario Values: A set ofS=10demand values Dp,sfor each productp and
scenario s was generated. The values were systematically determined to ensure that the average of
the scenario values for a product equals its mean p,, and the standard deviation of these values
equals g,.
Assign Scenario Probabilities: Equal probability n,=0.1 was assigned to each of the 10 scenarios,
representing a lack of prior knowledge about which future state is more likely, thus ensuring a risk-
neutral and robust planning approach.
The mathematical formulation of the moment-matching constraints for the generated scenarios is

given by:
1

S =1 Dps =ty Vp 15

1ys 2 _
sZo=1 (Dps —#p) =0y Vp 16
17

Zg:l TI:S = 1, With T[S = 0.1
This method resulted in the ten distinct demand scenarios detailed in Table 3 of the

manuscript. These scenarios, ranging from low-demand to high-demand states, provide a
comprehensive and statistically sound basis for the stochastic optimization model, allowing it to
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determine a network design that performs effectively across a wide spectrum of possible future
outcomes.

RESULTS & DISCUSSION

The computational results presented below in this study demonstrate the application of a
scenario-based stochastic optimization approach to design a sustainable closed-loop supply chain
(CLSC) network for a multi-product, single-period system in Benin City, Nigeria. Focusing on five
beverage products Coke, Fanta, Sprite, Big Cola, and Eva the analysis integrates forward and
reverse logistics to optimize product allocation, minimize costs, and reduce environmental impact.
The model incorporates key stages such as manufacturing, warehousing, retailing, disposal,
recycling, recovery, redistribution, and remanufacturing, addressing uncertainties in demand and
operational variables.

Table 3.
Optimization of the Stochastic Sustainable Closed Loop Supply Chain Network
(Multi-Product, Single-Period, and Multi Stage)

Product Product allocation 1 2 3 4 5 6 7 8 9 10
Scenarios in (‘000’)
Fanta Manufacturing Plant 118 134 92 129 114 113 178 129 58 156
Warehouse 144 201 119 132 106 129 159 91 96 142
Retailers 129 143 128 132 86 114 149 109 77 151
Disposals 111 151 515 131 114 117 128 115 115 101
Recyclers 121 102 115 185 141 174 154 102 91 110
Recovery 152 106 114 123 140 136 185 100 72 115
Redistributors 108 105 105 177 111 147 155 124 109 176
Remanufacturing 125 115 90 106 169 119 190 107 124 108
Sprite Manufacturing Plant 98 116 813 956 88 78 142 96 796 115
Warehouse 74 91 815 972 119 119 116 82 825 120
Retailers 38 88 845 936 97 104 92 108 785 104
Disposals 104 113 858 943 98 124 115 87 802 106
Recyclers 106 119 852 961 129 67 101 99 753 57
Recovery 81 106 836 926 118 104 85 87 791 145
Redistributors 81 61 812 939 142 92 132 91 819 103

Remanufacturing 95 107 852 908 99 111 121 97 809 77
Big Cola Manufacturing Plant 84 153 132 121 172 124 113 111 925 84

Warehouses 111 128 128 107 129 98 153 111 989 101
Retailers 108 111 112 109 97 104 135 104 936 113
Disposals 144 118 134 159 152 156 159 102 979 142
Recyclers 132 99 138 126 143 105 142 82 956 142
Recovery 79 86 95 88 145 137 149 133 931 118
Redistributors 116 132 85 97 63 139 147 139 943 127
Remanufacturing 95 96 46 77 129 77 156 121 958 163
Eva Manufacturing Plant 805 883 763 833 1027 958 1104 809 692 903
Warehouse 808 920 763 857 993 952 1088 796 695 907
Retailers 787 901 776 845 1040 946 1078 773 697 881
Disposals 808 892 735 878 991 959 1069 803 692 898
Recyclers 816 873 760 834 969 950 1077 792 690 896
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Recovery 793 905 751 874 995 927 1096 791 705 920
Redistributors 789 936 771 845 1019 959 1083 808 704 879
Remanufacturing 811 918 729 870 1013 938 1100 783 679 869
Coke Manufacturing Plant 66 98 976 92 99 115 111 76 910 139
Warehouse 87 124 941 111 139 120 130 96 878 96
Retailer 111 95 932 77 146 120 134 113 897 109
Disposal 62 133 956 99 124 128 109 97 893 110
Recycler 89 136 946 86 136 97 105 79 919 113
Recovery 105 77 967 70 116 131 93 55 887 104
Redistributor 104 103 122 950 129 150 105 126 870 903
Remanufacturing 77 108 931 80 105 121 136 111 947 103

Source: Researchers compilation, 2025

Table 3 presents the optimized product allocation across a multi-stage supply chain network
for five beverage products (Coke, Fanta, Sprite, Big Cola, and Eva) under ten different demand
scenarios. The data demonstrates how quantities flow through each stage of the closed-loop system,
from initial manufacturing to final remanufacturing, with all values expressed in thousands of units.
The analysis reveals significant variations in product movement across scenarios, highlighting how
the stochastic optimization approach effectively manages demand uncertainty. For instance, Sprite
shows particularly high volumes in Scenarios 3 and 4, with manufacturing plant outputs reaching
813,000 and 956,000 units respectively, while Eva consistently maintains high throughput across
most scenarios, peaking at 1,104,000 units in Scenario 7. A critical finding emerges from the
recovery and remanufacturing data, where PET bottle reuse rates approach 100% for several
products. This is particularly evident in Big Cola's Scenario 9, where 958,000 remanufactured units
nearly match the original 925,000 manufactured units, demonstrating near-perfect material
circularity. Similarly, Fanta's Scenario 7 shows 190,000 remanufactured units exceeding the initial
178,000 production, indicating additional recovered materials entering the system. The
environmental implications become apparent when examining disposal versus recycling figures.
Products like Coke and Sprite show substantial recycling volumes relative to disposal, suggesting
efficient reverse logistics operations. The consistent flow of materials from disposal centers to
recyclers and back to manufacturing plants confirms the model's effectiveness in closing the
production loop while maintaining economic viability, as reflected in the total optimized network
cost of N144,315,000. These results collectively demonstrate how stochastic optimization can
balance operational efficiency with sustainability objectives in complex supply chain networks.

In this case, the stochastic optimization technique was adapted to model uncertainties in demand
across the facilities in the network. The network which consisted of single facility drawn from each
echelon of the network was optimized using a distribution of data in Table 4.

Table 4.
Demand Mean for the Five Products

Demand mean 1 2 3 4 5 6 7 8 9 10
scenarios

Coke 100 110 950 105 120 115 130 100 900 110
Fanta 120 130 110 125 140 135 150 120 105 130
Sprite 90 100 850 950 110 105 120 90 800 100
Big Cola 110 120 105 115 130 125 140 110 950 120
Eva 800 900 750 850 1000 950 1100 800 700 900

Source: Researchers compilation, 2025
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Table 4 captures the fundamental demand patterns that drive the stochastic optimization
model, presenting mean demand values across ten scenarios for five beverage products. The data
reveals several important insights about market behavior and product performance within the supply
chain network. Eva emerges as the dominant product in terms of demand volume, maintaining
consistently high values that exceeds other products. Its demand fluctuates between 700,000 and
1,100,000 units, with particularly strong performance in Scenario 7. This product's substantial
market presence significantly influences overall network design decisions and resource allocation
strategies. The table highlights Sprite's unique demand profile, showing dramatic spikes in Scenarios
3 and 4 where demand nearly doubles compared to other scenarios. These fluctuations demonstrate
the product's potential vulnerability to market volatility, requiring particularly robust inventory and
production planning approaches. Meanwhile, Coke, Fanta and Big Cola exhibit more stable demand
patterns, though still with noticeable variations between scenarios that reflect real-world market
uncertainties. Scenario 7 stands out as a period of generally elevated demand across most products,
suggesting potential seasonal or market-wide factors that would require additional supply chain
capacity. Conversely, Scenario 9 shows the most pronounced demand reduction for Eva while
maintaining strong performance for Coke, indicating shifting product preferences that the
optimization model must accommodate. The demand disparities between products with Eva's
volumes being 7-10 times greater than others underscore the need for differentiated inventory and
production strategies within the same supply chain network. These variations in scale would
significantly impact facility sizing, transportation planning, and resource allocation decisions
throughout the network.

Table 5.
Demand Standard Deviation, Environmental Impact, Reverse Logistics Cost/Unit, and
Recycling Cost for the Five Products
Products Standard Deviation = Environmental Impact = Reverse Logistics Cost ~ Recycling Capacity

Coke 20 5 2000 1500
Fanta 24 3 1500 100
Sprite 18 4 2500 200
Big Cola 22 6 200 1800
Eva 16 2 1200 1200

Source: Researchers compilation, 2025

Table 5 provides essential operational and environmental metrics for each of the five beverage
products, offering critical inputs for the stochastic optimization model. The data reveals distinct
characteristics that shape the supply chain network's economic and environmental performance. The
standard deviation values highlight differing levels of demand uncertainty across products. Sprite
demonstrates the highest volatility with a standard deviation of 18, suggesting less predictable
demand patterns compared to Eva, which shows greater stability with a deviation of 16. This
variability directly impacts inventory management and production planning strategies, requiring
more flexible solutions for products like Sprite to prevent stockouts or overstocking. Big Cola stands
out with the highest environmental impact (6 kg CO, per unit), likely due to factors such as material
composition or production complexity. In contrast, Eva shows the lowest impact (2 kg CO, per
unit), indicating more sustainable production or distribution processes. These differences influence
the network's overall carbon footprint and underscore the need for product-specific environmental
mitigation strategies. Reverse logistics costs vary significantly, with Sprite incurring the highest
expenses (2500 per unit), potentially due to complex collection or transportation requirements. Coke
follows closely at 2000 per unit, while Big Cola presents an interesting case with remarkably low
reverse logistics costs (200 per unit) paired with high recycling capacity (1800 units). This
combination suggests efficient recovery processes that make Big Cola particularly suitable for closed-
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loop operations. Recycling capacity figures reveal strategic opportunities for resource recovery.
Fanta's low capacity (100 units) compared to its demand may indicate bottlenecks in its recycling
infrastructure, whereas Big Cola's high capacity (1800 units) demonstrates strong circular economy
potential. These metrics help identify which products would benefit most from investments in
recycling technologies or collection networks.

Findings from the tables in table 2, for the various products show that Coke product, Scenario
9 appears to be the most efficient allocation. In this scenario, 910,000 units were manufactured, with
878,000 units moving through the warehouse. A total of 893,000 units were collected from retailers
for disposal. The recycling process yielded 887,000 units for recovery, and notably, 947,000 units
were sent to the manufacturing plant for remanufacturing. The fact that the quantity sent for
remanufacturing exceeds the original production volume (910,000 units) suggests that the reverse
logistics network is effectively capturing PET bottles from beyond a single product lifecycle. This
high level of material recovery likely contributes to a reduction in virgin raw material costs, thereby
improving the overall cost-efficiency of the system. For the Fanta product, the optimal allocation is
observed in Scenario 7. This scenario shows an initial production of 178,000 units and a
warehousing flow of 159,000 units. The model allocated 128,000 units for disposal after consumer
use. From a recycling volume of 154,000 units, 185,000 units were recovered, and 190,000 units
were ultimately sent for remanufacturing. The remanufacturing quantity again surpasses the initial
production, indicating a robust recovery mechanism that captures additional materials from the
market, which can substitute for virgin PET and potentially lower material procurement expenses.
In the case of Sprite, Scenario 3 demonstrates a favorable allocation. Manufacturing output was
956,000 units, with a slightly higher flow of 972,000 units through warehouses, potentially
indicating pre-existing inventory. A total of 936,000 units were disposed of by consumers. From a
recycling stream of 961,000 units, 926,000 units were recovered, and 908,000 units were directed to
remanufacturing. This represents a recovery rate of approximately 94.97% of the manufactured
quantity for remanufacturing purposes, demonstrating a high degree of material circularity and a
significant avoidance of virgin material use. The analysis for Big Cola identifies Scenario 9 as
optimal. The manufacturing plant produced 925,000 units, while warehouse throughput was
989,000 units; this discrepancy may be attributable to inventory carried over from a previous period,
a factor not dynamically modeled in this single-period study. Consumer disposal was 979,000 units.
From a recycling quantity of 956,000 units, 931,000 were recovered, and 958,000 units were sent for
remanufacturing. The remanufacturing quantity is marginally higher than the original production,
suggesting a recovery rate approaching 100% for the bottles produced in that cycle, which would
substantially reduce reliance on new raw materials. Finally, for the Eva product, Scenario 7 shows
the most effective allocation. A substantial 1,104,000 units were manufactured, with 1,088,000 units
handled by the warehouse. Consumer returns for disposal amounted to 1,069,000 units. The
recycling process handled 1,077,000 units, leading to the recovery of 1,096,000 units a figure that
may be influenced by base stock already present at the recovery facility. A volume of 1,100,000 units
was sent for remanufacturing. This represents a recovery rate of 99.6% for the remanufacturing feed,
indicating an exceptionally efficient closed-loop process that minimizes the need for virgin PET and
its associated costs.
Sensitivity and Robustness Analysis

To evaluate the robustness of the proposed stochastic sustainable CLSC model, a sensitivity
analysis was conducted on the key parameter: the recovery rate (0). This parameter significantly
influences the reverse logistics flow and the overall economic and environmental performance of the
network. The base case value of 6 was varied by +10% and *20%, and the impact on the total
network cost (Z,) and total environmental impact (Z,) was observed.
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Table 6.

Sensitivity Analysis on Recovery Rate (0)
Recovery Change Total Network % Change Total Environmental % Change in
Rate (0) from Base Cost (N'000) in Cost Impact (kg CO,) Impact
0.60 -20% 149, 102 +3.32% 498, 150 +3.49%
0.675 -10% 146, 885 +1.78% 489, 755 +1.74%
0.75 (Base) 0% 144, 315 481, 360
0.825 +10% 142, 050 -1.57% 473, 200 -1.70%
0.90 +20% 139, 521 -3.32% 464, 810 -3.44%

Source: Researchers compilation, 2025

The results, summarized in Table 6, demonstrate that the model is sensitive to changes in the
recovery rate, but the responses are logical and stable, indicating robustness. As the recovery rate (6)
increases:
Total Cost Decreases: A higher recovery rate reduces the dependency on virgin raw materials,
leading to lower procurement and production costs. A 20% increase in 0 results in a 3.32% cost
saving.
Environmental Impact Decreases: Increased remanufacturing directly reduces the carbon
footprint associated with producing new PET bottles from virgin materials. A 20% increase
in 0 lowers the environmental impact by 3.44%.
Conversely, a lower recovery rate increases both cost and environmental impact. This analysis
underscores the critical importance of investing in efficient collection and sorting systems to
improve 0. It provides managers with quantitative evidence that capital invested in reverse logistics
infrastructure can yield significant economic and environmental returns, thereby de-risking such
strategic decisions.

LIMITATIONS AND FUTURE RESEARCH

While this study provides valuable insights, several limitations should be acknowledged.
Firstly, the model is a single-period formulation, which does not capture the dynamic, long-term
strategic decisions such as multi-period inventory holding, capacity expansion, or the depreciation of
facilities and equipment. Future research should extend this work into a multi-period horizon.
Secondly, the sources of uncertainty are primarily focused on demand and cost parameters. Other
critical uncertainties, such as supplier reliability, transportation lead times, and the quality of
returned products, were not explicitly modeled. Incorporating these would enhance the model's
resilience. Thirdly, the social objective is simplified to job creation. A more comprehensive social
pillar could include metrics for community development, health and safety, and fair labor practices.
Finally, the scenario generation, while statistically sound, is based on historical data. Future studies
could employ more advanced forecasting techniques, including machine learning, to generate more
predictive scenarios, especially for analyzing disruption risks and post-pandemic market shifts.

CONCLUSION

This study successfully optimized a stochastic sustainable closed-loop supply chain network
for multi-product, single-period operations in Benin City, Nigeria, focusing on five beverage
products (Coke, Fanta, Sprite, Big Cola, and Eva). By integrating forward and reverse logistics
including manufacturing, warehousing, recycling, and remanufacturing the research demonstrated
how closed-loop systems can simultaneously achieve economic efficiency and environmental
sustainability. Key findings revealed that 94-100% of PET bottles were recovered and reused,
significantly reducing reliance on virgin materials and lowering production costs. The total network
cost was optimized to N144,315,000, while the environmental impact was quantified at 481,360 kg
of CO,, underscoring the trade-offs between cost and sustainability. The study highlights the critical
role of stochastic optimization in managing demand variability, particularly in emerging markets
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where supply chain disruptions are common. By adopting remanufacturing and recycling strategies,
businesses can enhance resource efficiency, minimize waste, and contribute to circular economy
practices. The results also emphasize the importance of designing flexible supply chain networks that
accommodate uncertainty while maintaining operational and environmental goals. For
policymakers and industry practitioners, these findings advocate for investments in reverse logistics
infrastructure and cleaner production technologies. Future research could expand this framework to
multi-period models, incorporate dynamic pricing strategies, or explore sector-specific adaptations to
further refine sustainability outcomes. Ultimately, this study provides a replicable blueprint for
integrating sustainability into supply chain operations, offering both economic and environmental
benefits for the beverage industry and beyond.
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