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Article Info Abstract 

Purpose: This study examined the optimization of a stochastic 

sustainable closed-loop supply chain network for multi-product, 

single-period operations in a beverage company in Benin City, 

Nigeria, with a focus on five beverage products (Coke, Fanta, Sprite, 

Big Cola, and Eva). 

 

Method: The research employed a scenario-based stochastic mixed 

integer linear programming (SMILP) modeling approach to address 

demand uncertainties while minimizing costs and environmental 

impact. The network integrates forward and reverse logistics, 

including manufacturing, warehousing, retailing, disposal, recycling, 

recovery, redistribution, and remanufacturing stages. 

 

Result: Key findings reveal optimal product allocation scenarios for 

each product, demonstrating significant cost savings through 

remanufacturing and recycling. For instance, 94-100% of PET bottles 

were recovered and reused, reducing reliance on virgin materials and 

lowering production costs. The total environmental impact was 

quantified at 481,360 kg of CO₂, with variations across products due 

to differences in recycling efficiency and reverse logistics costs. The 

total network cost was optimized to N144,315,000, balancing 

economic and sustainability objectives. The study highlights the 

viability of closed-loop supply chains in emerging markets, 

emphasizing the role of stochastic optimization in managing demand 

variability. Practical implications include strategies for enhancing 

resource efficiency, reducing waste, and improving circular economy 

practices in the beverage industry.  
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INTRODUCTION 

Effective Supply Chain Management (SCM) is crucial in a volatile business environment 
(Lambert, 2006; Mentzer, 2001). Moving beyond traditional efficiency, Sustainable Supply Chains 
(SSCs) balance the Triple Bottom Line (Seuring & Müller, 2008). A key evolution is the Closed-
Loop Supply Chain (CLSC), which integrates reverse logistics to minimize waste and align with 
Circular Economy (CE) principles (Guide & Wassenhove, 2009). This is highly relevant in contexts 
like Benin City, Nigeria, which faces a plastic waste crisis driven by urbanization and limited 
infrastructure (Environmental Rights Action, 2021; Rafli et al., 2025).  

While CLSCs are recognized as a key CE enabler (Abbasi et al., 2025), a research gap persists. 
Existing models are often single-product, deterministic (Ebrahim et al., 2023; Abolghasem et al., 
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2023), and lack resilience for post-COVID realities (Ivanov & Keskin, 2023). This study addresses 
these gaps by developing a multi-product, stochastic sustainable CLSC network for Benin City's 
beverage industry, tackling facility location and material allocation under demand uncertainty to 
provide a circularity blueprint for emerging markets. 

 

Conceptual review 
Supply chain networks face significant uncertainties from demand fluctuations, supply 

disruptions, and cost volatility, necessitating robust planning. To address this, scenario-based 
stochastic optimization has emerged as a key methodology. It enables decision-makers to evaluate 
multiple future states and optimize network design under risk. This approach is particularly critical 
for designing sustainable and resilient supply chains, as it allows for balancing economic, 
environmental, and social objectives amid uncertainty. 

Stochastic Modeling in Supply Chain Networks 
Two-stage stochastic programming is a robust framework for Supply Chain Network Design 

(SCND) under uncertainty. This is exemplified by Moheb-Alizadeh et al. (2021), who developed a 
two-stage stochastic multi-objective model to optimize a sustainable Closed-Loop Supply Chain 
(CLSC) under uncertainties in demand and facility efficiency, overcoming the limitations of 
deterministic approaches. The literature on CLSCs has evolved from foundational models of 
integrated forward and reverse logistics (Guide & Wassenhove, 2009; Pishvaee & Torabi, 2010) into 
sophisticated frameworks that now incorporate the Circular Economy (CE) paradigm, advanced 
stochastic programming, and robust solution algorithms, often in response to global disruptions. 

Recent research has shifted Closed-Loop Supply Chain (CLSC) models towards being deeply 
rooted in Circular Economy (CE) principles, framing CE as a core strategy for resilient, sustainable 
supply chains (Abbasi et al., 2025). This is critical in emerging economies like Nigeria, where plastic 
packaging presents both an environmental challenge and a resource recovery opportunity. While 
several works employ a single-period model to address immediate operational challenges, the 

literature trends toward dynamic, multi-period frameworks (Mardan et al., 2019; Goli & Tirkolaee, 
2023) to better capture long-term circular dynamics. Furthermore, the social dimension of 
sustainability is now being rigorously integrated, as seen in this study's use of a job-creation 
indicator, aligning with multi-objective models that incorporate social goals like employment 
(Pedram et al., 2017; Abbasi et al., 2025). 

Advanced Handling of Uncertainty and Scenario-Generation 
A critical aspect of robust Closed-Loop Supply Chain (CLSC) design is managing uncertainty. 

While this study uses scenario-based stochastic optimization for demand uncertainty, contemporary 
research employs more advanced techniques. These include Monte Carlo simulation for probabilistic 
scenario generation (Zhalechian et al., 2016) and data-driven machine learning approaches for 
predictive scenario creation (Abbasi et al., 2024). To address epistemic uncertainty in parameters 
like costs, this study uses trapezoidal fuzzy numbers. Recent research advances this through hybrid 
models combining robust optimization, fuzzy logic, and stochastic programming (Goli et al., 2023; 

Tavana et al., 2022). Furthermore, the post-COVID era has highlighted the need for context-driven 
scenario design, explicitly modeling disruption phases to enhance resilience (Ivanov & Keskin, 2023; 
Abbasi et al., 2025). 

Algorithmic Solutions for Complex CLSC Models 
A current trend in Closed-Loop Supply Chain (CLSC) optimization is the development 

of hybrid algorithms. For instance, Abbasi et al. (2025) combine the Whale Optimization Algorithm 
(WOA) with Simulated Annealing (SA) to balance global exploration and local exploitation. This 
aligns with other successful hybrid approaches, such as those integrating Genetic Algorithms (GAs) 
(Devika et al., 2014; Goli, 2024). 

Furthermore, modern studies employ rigorous validation frameworks, utilizing multiple 
performance metrics like the Number of Pareto Solutions (NPS), Mean Ideal Distance (MID), and 
Spread of Non-dominated Solutions (SNS). The use of statistical tests and systematic parameter 
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tuning methods like the Taguchi method (Abbasi et al., 2025) is now considered a best practice for 
establishing methodological credibility. 

Scenario-Based Approaches and Uncertainty Handling 
Scenario-based optimization is a critical methodology for managing supply chain uncertainties 

such as demand fluctuations and price volatility. This approach utilizes techniques like stochastic, 
possibilistic, and robust programming to generate multiple future states, thereby enabling resilient 
decision-making. The field demonstrates a progression from applying these methods individually, as 
seen in the possibilistic programming for medical supply chains by Pishvaee et al. (2014) and the 
stochastic modeling for closed-loop networks by Zhalechian et al. (2016), towards more 
sophisticated hybrid models. These advanced frameworks combine methodologies to handle hybrid 
uncertainties, exemplified by the integration of robust, stochastic, and possibilistic programming by 
Dehrani et al. (2018) and the application of fuzzy stochastic programming by Tehrani and Gupta 

(2021) to balance economic and environmental goals. A central challenge remains the accurate 
representation of uncertainty, which is increasingly addressed through advanced scenario generation 
techniques like Monte Carlo simulation.  

 

RESEARCH METHODS 
This study employed the case-study research design to optimize re-design an existing supply 

chain network, and integrate the closed loop concept into the supply chain network. The populations 
of the study involve all the facilities of the supply chain network of the Nigerian Bottling Company’s 
products, and packaging bottles, polyethylene terephthalate (PET) in Nigeria. Facilities within the 
south-south, south-east, and south west geopolitical zones of Nigeria, were selected due to the level 
of demand product and usage of PET bottles in these areas, these facilities were used to scientifically 
design a supply chain network for the company, and to synthesize sustainability in the SC network 
within the city where the study was carried out. The network features included manufacturing and 
re-manufacturing plants, distribution, and re-distribution centres, warehouses, inspection centres, 

disposal centres, and disassembly centres. The study considered a time frame of 2024 for the study of 
the forward deterministic network data. In addition, a scenario optimization approach was adopted 
to generate the uncertain random parameters, in addition to the single time frame of sustainable 
closed loop network data utilized in the study. Furthermore, a scenario optimization approach was 
adopted to generate the uncertain random demand for the stochastic optimization.  Furthermore, 
this study employed the secondary data in its analysis. Data on total supply, manufacture, inventory, 
transportation, distribution and re-distribution, disposal, inspection, repair, and remanufacture 
quantity and capacity, reverse rates, as well as annual demand, was obtained from the reviewed 
articles and annual reports. Finally, the mixed integer linear programming (MILP) technique was 
used to formulate the multi objective optimization problem since output values of some variables are 
expected to be in integers and some others in non-integer of continuous form that is, in fractional 
form from the model. The developed mathematical model was solved through the General Algebraic 
Modeling Systems (GAMS) studio 40.  

The mathematical model is built upon several key assumptions. First, customer demands are 
defined as fuzzy numbers to account for uncertainty, and all products produced and stored are 
assumed to be free of defects. The supply network is structured so that all customer demands are met 
either directly from factories or through warehouses. A critical recovery process is included, where 

products entering Distribution Centers (DCs) have a probability of θ of being recovered and a 

probability of 1-θ of being disposed of. Furthermore, the fixed and variable costs for constructing 
supply chain institutions are considered pre-determined but also fuzzy in nature. The model operates 
in a multi-product context, distinguishing between green and non-green quality levels. To reflect 
market segmentation, customers are categorized as either green or non-green based on their 
consumption preferences, with green products being defined as those made from environmentally 
friendly materials. Finally, the model allows for products to be manufactured in either green or non-
green modes in response to these specific customer demands. 
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Single-Period Model: The use of a single-period framework is justified as it provides a foundational, 

tactical blueprint for initial CLSC implementation. It captures the immediate operational trade-offs 
without the added complexity of multi-period inventory dynamics, which is a suitable first step for a 
case study in an emerging market context. 
Fuzzy and Stochastic Demand: Representing demand through a hybrid fuzzy-stochastic approach is 

justified as it captures two types of uncertainty: inherent randomness (addressed by scenarios) and 
epistemic uncertainty due to a lack of precise historical data (addressed by fuzzy numbers). This is 
particularly relevant in the volatile Nigerian market. 
Pre-determined and Fuzzy Costs: Assuming fixed costs are pre-determined but fuzzy acknowledges 

that while contractual agreements set baseline costs, factors like inflation, currency fluctuation, and 
negotiation can introduce vagueness, which the fuzzy logic component helps to manage. 
Products are Defect-Free in Forward Logistics: This assumption simplifies the model by focusing 

reverse logistics solely on post-consumer returns, which constitute the vast majority of flows in the 
beverage industry, rather than on defective returns from retailers. 

 

Problem Description 
The proposed framework incorporates mathematical equations designed to calculate optimal 

values for key decision variables, including production rates, inter-echelon product flows, inventory 
levels, and capacity constraints for warehouses and distribution centers (Table 1).  

 

Table 1.  

Model Variables and Parameters 

Symbol Description 

𝒑 ∈ 𝑷 Set of products (Coke, Fanta, Sprite, Big Cola, Eva) 

𝒒 ∈ 𝑸 Set of quality levels (Green, Non-Green) 

𝒇 ∈ 𝑭 Set of potential factory locations 

𝒘 ∈ 𝑾 Set of potential warehouse locations 

𝒄 ∈ 𝑪 Set of customer zones 

𝒊 ∈ 𝑰 Set of potential disassembly center (DC) locations 

𝒏 ∈ 𝑵 Set of potential disposal center locations 

𝒔 ∈ 𝑺 Set of demand scenarios 

𝒕𝒇 ∈ 𝑻𝑭 Set of transportation modes from factories 

𝒕𝒘 ∈ 𝑻𝑾 Set of transportation modes from warehouses 

𝒕𝒌 ∈ 𝑻𝑲 Set of transportation modes from customers 

Parameters  

Symbol Description 

𝑫pqcs  Demand for product 𝑝 of quality 𝑞 from customer 𝑐 in scenario 𝑠 

𝝅𝒔 Probability of scenario 𝑠 

𝜽 Recovery rate (percentage of collected products suitable for remanufacturing) 

𝑭𝑪𝒇, 𝑭𝑪𝒘, 𝑭𝑪𝒊 Fixed cost of opening factory 𝑓, warehouse 𝑤, DC 𝑖 

𝑽𝑪𝒑𝒒𝒇
𝒑𝒓𝒐𝒅

 Variable production cost for product 𝑝, quality 𝑞 at factory 𝑓 

𝑽𝑪𝒑𝒒𝒇
𝒓𝒆𝒎 Variable remanufacturing cost for product 𝑝, quality 𝑞 at factory 𝑓 

𝑻𝑪𝒇𝒘𝒕𝒇, 𝑻𝑪𝒘𝒄𝒕𝒘 Unit transportation cost between facilities via specific modes 

𝑪𝒂𝒑 𝒑𝒒𝒇
𝒑𝒓𝒐𝒅

, 𝑪𝒂𝒑𝒑𝒒𝒇
𝒓𝒆𝒎 Production and remanufacturing capacity at factory 𝑓 

𝑪𝒂𝒑𝒘
𝒘𝒉, 𝑪𝒂𝒑𝒊

𝒅𝒄 Capacity of warehouse 𝑤 and disassembly center 𝑖 

𝑬𝑰𝒑𝒒𝒇
𝒑𝒓𝒐𝒅

, 𝑬𝑰𝒑𝒒𝒇
𝒓𝒆𝒎 Environmental impact ( CO2kg ) per unit operation (production, transport, etc.) 

𝑱𝒇, 𝑱𝒘, 𝑱𝒊 Number of jobs created by opening facility 𝑓, 𝑤, 𝑖 
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This non-deterministic, multi-objective model accounts for uncertainties in cost parameters 
and customer demand by representing them as trapezoidal fuzzy numbers. To effectively handle 
these uncertainties, the model employs a robust possibilistic programming approach (Table 2). 

 

Table 2.  

Decision Variables 

Symbol Description 

𝑿𝒇, 𝑿𝒘, 𝑿𝒊 Binary variables: 1 if facility 𝑓, 𝑤, 𝑖 is opened, else 0 

𝒀𝒑𝒒𝒇
𝒑𝒓𝒐𝒅

 Continuous: Quantity of new product 𝑝, quality 𝑞 produced at factory 𝑓 

𝒀𝒑𝒒𝒇
rem  Continuous: Quantity of product 𝑝, quality 𝑞 remanufactured at factory 𝑓 

Flow 𝒑𝒒𝒇𝒘𝒕𝒔
𝐅𝐖

 Flow of product 𝑝, quality 𝑞 from factory 𝑓 to warehouse 𝑤 via mode 𝑡𝑓 in 

scenario 𝑠 

Flow  pqwcts 
𝐖𝐂  Flow from warehouse 𝑤 to customer 𝑐 via mode 𝑡𝑤 in scenario 𝑠 

Flow pqcits 
𝐂𝐈

 Flow of returned product from customer 𝑐 to DC 𝑖 via mode 𝑡𝑘 in scenario 𝑠 

Flow  pqifts 
IF  Flow of recovered materials from DC 𝑖 to factory 𝑓 via mode 𝑡𝑖 in scenario 𝑠 

Flow  pqints 
𝐈𝐍  Flow of waste from DC 𝑖 to disposal site 𝑛 via mode 𝑡𝑛 in scenario 𝑠 

 

The Stochastic Multi-Objective Mixed-Integer Linear Programming (SMILP) Model 

The model is formulated with three objective functions, optimized simultaneously. 

Objective 1: Minimize Total Expected Cost 

Min𝑍1 = 𝑇𝐹𝐶 + 𝑇𝑉𝐶 + 𝑇𝑇𝐶                                                                                          1 

Where: 

Total Fixed Cost (TFC): 

𝑇𝐹𝐶 = ∑  

𝑓∈𝐹

𝐹𝐶𝑓𝑋𝑓 + ∑  

𝑤∈𝑊

𝐹𝐶𝑤𝑋𝑤 + ∑  

𝑖∈𝐼

𝐹𝐶𝑖𝑋𝑖                                                         2 

Total Expected Variable Cost (TVC): 

𝑇𝑉𝐶 = ∑  

𝑠∈𝑆

𝜋𝑠 [ ∑  

𝑝,𝑞,𝑓

  (𝑉𝐶𝑝𝑞𝑓
prod 

𝑌𝑝𝑞𝑓
prod 

+ 𝑉𝐶𝑝𝑞𝑓
rem 𝑌𝑝𝑞𝑓

rem ) + ∑  

𝑝,𝑞,𝑤

 𝑉𝐶𝑝𝑞𝑤
wh 𝐼𝑛𝑣𝑝𝑞𝑤𝑠 + ∑  

𝑝,𝑞,𝑐,𝑖

 𝑉𝐶𝑝𝑞𝑐
coll 𝐹𝑙𝑜𝑤𝑝𝑞𝑐𝑖𝑡𝑠

𝐶𝐼

+ ∑  

𝑝,𝑞,𝑖

 𝑉𝐶𝑝𝑞𝑖
dis ∑  

𝑐,𝑡𝑘

 𝐹𝑙𝑜𝑤𝑝𝑞𝑐𝑖𝑡𝑠
𝐶𝐼 ]                                                                                3 

Total Expected Transportation Cost (TTC): 

𝑇𝑇𝐶 = ∑  

𝑠∈𝑆

𝜋𝑠 [ ∑  

𝑝,𝑞,𝑓,𝑤,𝑡𝑓

 𝑇𝐶𝑓𝑤𝑡𝑓𝐹𝑙𝑜𝑤𝑝𝑞𝑓𝑤𝑡𝑠
𝐹𝑊 + ∑  

𝑝,𝑞,𝑤,𝑐,𝑡𝑤

 𝑇𝐶𝑤𝑐𝑡𝑤𝐹𝑙𝑜𝑤𝑝𝑞𝑤𝑐𝑡𝑠
𝑊𝐶                      4

+ ∑  

𝑝,𝑞,𝑐,𝑖,𝑡𝑘

 𝑇𝐶𝑐𝑖𝑡𝑘𝐹𝑙𝑜𝑤𝑝𝑞𝑐𝑖𝑡𝑠
𝐶𝐼 + ∑  

𝑝,𝑞,𝑖𝑓,𝑡𝑖

 𝑇𝐶𝑖𝑓𝑡𝑖𝐹𝑙𝑜𝑤𝑝𝑞𝑖𝑓𝑡𝑠
𝐼𝐹    + ∑  

𝑝,𝑞,𝑖,𝑛,𝑡𝑛

 𝑇𝐶𝑖𝑛𝑡𝑛𝐹𝑙𝑜𝑤𝑙
𝑗
 

Objective 2: Minimize Total Expected Environmental Impact 

Min𝑍2 = 𝑇𝐸 = ∑  

𝑠∈𝑆

𝜋𝑠(𝐸𝑃 + 𝐸𝐷 + 𝐸𝑅 + 𝐸𝑇)                                                              5  

Where: 

𝐸𝑃 = ∑  𝑝,𝑞,𝑓 (𝐸𝐼𝑝𝑞𝑓
prod 

𝑌𝑝𝑞𝑓
prod 

+ 𝐸𝐼𝑝𝑞𝑓
rem 𝑌𝑝𝑞𝑓

rem ) (Impact from Production)                               5a 

𝐸𝐷 = ∑  𝑝,𝑞,𝑖 𝐸𝐼𝑝𝑞𝑖
𝑑𝑖𝑠 ∑  𝑐,𝑡𝑘 𝐹𝑙𝑜𝑤𝑝𝑞𝑐𝑖𝑡𝑠

𝐶𝐼  (Impact from Disassembly)                   5b 

𝐸𝑅 = ∑  𝑝,𝑞,𝑖,𝑓,𝑡𝑖 𝐸𝐼𝑡𝑖
𝑡𝑟𝑎𝑛𝑠 ⋅ 𝑚𝑑𝑖𝑓 ⋅ 𝐹𝑙𝑜𝑤𝑝𝑞𝑖𝑓𝑡𝑠

𝐼𝐹                                        5c 
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(Impact from Transport, calculated as rate × distance × flow for all arcs) 

Objective 3: Maximize Total Expected Social Benefit (Job Creation) 

Max𝑍3 = 𝑆𝐵 = ∑  

𝑓∈𝐹

𝐽𝑓𝑋𝑓 + ∑  

𝑤∈𝑊

𝐽𝑤𝑋𝑤 + ∑  

𝑖∈𝐼

𝐽𝑖𝑋𝑖                                                      6 

Subject to the following constraints: 

Demand Satisfaction Constraint: 

∑  

𝑤,𝑡𝑤

𝐹𝑙𝑜𝑤𝑝𝑞𝑤𝑐𝑡𝑠
𝑊𝐶 = 𝐷𝑝𝑞𝑐𝑠 ∀𝑝, 𝑞, 𝑐, 𝑠                                                                                 7 

Production Capacity Constraints: 

∑  

𝑞

  (𝑌𝑝𝑞𝑓
prod 

+ 𝑌𝑝𝑞𝑓
rem ) ≤ 𝐶𝑎𝑝𝑝𝑓

prod 
𝑋𝑓 ∀𝑝, 𝑓

𝑌𝑝𝑞𝑓
rem ≤ 𝐶𝑎𝑝𝑝𝑞𝑓

rem 𝑋𝑓 ∀𝑝, 𝑞, 𝑓

                                                                         8 

Warehouse Capacity and Flow Balance: 

∑  

𝑝,𝑞

 𝐼𝑛𝑣𝑝𝑞𝑤𝑠 ≤ Cap𝑤
𝑤ℎ𝑋𝑤  ∀𝑤, 𝑠                                                                                          9

∑  

𝑓,𝑡𝑓

 𝐹𝑙𝑜𝑤𝑝𝑞𝑓𝑤𝑡𝑠
𝐹𝑊 = ∑  

𝑐,𝑡𝑤

 𝐹𝑙𝑜𝑤𝑝𝑞𝑤𝑐𝑡𝑠
𝑊𝐶  ∀𝑝, 𝑞, 𝑤, 𝑠                                                            10

 

Reverse Logistics and Recovery Balance: 

∑  

𝑓,𝑡𝑖

 𝐹𝑙𝑜𝑤𝑝𝑞𝑖𝑓𝑡𝑠
𝐼𝐹 = 𝜃 ∑  

𝑐,𝑡𝑘

 𝐹𝑙𝑜𝑤𝑝𝑞𝑐𝑖𝑡𝑠
𝐶𝐼  ∀𝑝, 𝑞, 𝑖, 𝑠                                                                11

∑  

𝑛,𝑡𝑛

 𝐹𝑙𝑜𝑤𝑝𝑞𝑖𝑛𝑡𝑠
𝐼𝑁 = (1 − 𝜃) ∑  

𝑐,𝑡𝑘

 𝐹𝑙𝑜𝑤𝑝𝑞𝑐𝑖𝑡𝑠
𝐶𝐼  ∀𝑝, 𝑞, 𝑖, 𝑠                                                   12

 

Disassembly Center Capacity: 

∑  

𝑝,𝑞,𝑐,𝑡𝑘

 Flow 𝑝𝑞𝑐𝑖𝑡𝑠
𝐶𝐼 ≤  Cap 𝑖

𝑑𝑐𝑋𝑖 ∀𝑖, 𝑠                                                                             13 

Non-Negativity and Binary Constraints: 

𝑌𝑝𝑞𝑓
𝑝𝑟𝑜𝑑

, 𝑌𝑝𝑞𝑓
𝑟𝑒𝑚, 𝐹𝑙𝑜𝑤𝑝𝑞𝑓𝑤𝑡𝑠

𝐹𝑊 ≥ 0 ∀𝑝, 𝑞, 𝑓, 𝑤, 𝑡𝑓, 𝑠

𝑋𝑓 , 𝑋𝑤 , 𝑋𝑖 ∈ {0,1} ∀𝑓, 𝑤, 𝑖
                                                              14 

 
The sustainable closed-loop supply chain model encompasses five primary components: 

1. Production facilities (for both manufacturing and remanufacturing) 
2. Warehousing facilities 
3. Customer markets 
4. Disassembly centers (DCs) 

5. Waste disposal facilities 
The model specifically tracks product movement patterns based on product condition and lifecycle 
stage, with the following operational flows: 
i.  Forward Distribution: All newly manufactured and remanufactured products are distributed 

through the forward supply chain network (from factories to warehouses, then to customers) to 
fulfill market demand. 

ii.   Reverse Logistics & Disposition: End-of-life products collected from customers are transported 
to disassembly centers (DCs). At these facilities, products undergo evaluation -reusable 
components re-enter the manufacturing cycle, while non-recyclable materials are routed to 
designated disposal facilities. 

iii.  Component Reintegration: Disassembled parts and materials suitable for reuse are  
      shipped from DCs back to manufacturing plants for reprocessing. 
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iv.  Dual Production System: Factories operate two parallel production streams: 

a. Reassembly of recovered components from the reverse supply chain 

b. Conventional manufacturing using virgin raw materials from suppliers 

 

Scenario Generation 
A critical component of the stochastic optimization model is the generation of plausible 

demand scenarios that accurately capture the uncertainty inherent in the beverage market. This 
study employed a two-stage process for scenario generation: first, the collection and analysis of 
historical data to establish key statistical parameters; and second, the application of a moment-
matching method to construct a set of discrete scenarios that represent the range of possible future 
demand states. 

Data Sources for Demand Estimation 

The primary data for characterizing demand uncertainty were derived from secondary sources. 
Historical sales and demand data for the five products (Coke, Fanta, Sprite, Big Cola, and Eva) were 
obtained from the reviewed annual reports of the Nigerian Bottling Company and relevant industry 
publications cited in the literature. This data provided a time series sufficient for estimating the 

central tendency and variability of demand for each product. The mean demand 𝜇𝑝 and standard 

deviation 𝜎𝑝 for each product p, as presented in Table 4 and Table 5, were calculated directly from 

this historical dataset. These parameters form the statistical foundation for the scenario generation 
process. 

The Moment-Matching Method for Scenario Creation 
To translate the continuous demand distributions into a finite set of scenarios suitable for the 

Stochastic Mixed-Integer Linear Programming (SMILP) model, the moment-matching method was 
utilized. This technique generates a discrete set of scenarios whose first and second statistical 
moments (mean and variance/covariance) match those of the original historical data. This ensures 
that the scenarios are statistically representative of the observed demand uncertainty. 
The process was implemented as follows: 

Define Target Moments: For each product, the target moments were defined as the historical 

mean μp and standard deviation 𝜎𝑝. 

Generate Scenario Values: A set of S=10 demand values Dp,s for each product p and 

scenario s was generated. The values were systematically determined to ensure that the average of 

the scenario values for a product equals its mean 𝜇𝑝, and the standard deviation of these values 

equals 𝜎𝑝. 

Assign Scenario Probabilities: Equal probability πs=0.1 was assigned to each of the 10 scenarios, 
representing a lack of prior knowledge about which future state is more likely, thus ensuring a risk-
neutral and robust planning approach. 
The mathematical formulation of the moment-matching constraints for the generated scenarios is 
given by: 
1

𝑆
∑  𝑆

𝑠=1  𝐷𝑝,𝑠 = 𝜇𝑝 ∀𝑝        15 

 

√
1

𝑆
∑  𝑆

𝑠=1   (𝐷𝑝,𝑠 − 𝜇𝑝)
2

= 𝜎𝑝 ∀𝑝                    16 

∑  𝑆
𝑠=1  𝜋𝑠 = 1,  with 𝜋𝑠 = 0.1

       17 

 
This method resulted in the ten distinct demand scenarios detailed in Table 3 of the 

manuscript. These scenarios, ranging from low-demand to high-demand states, provide a 
comprehensive and statistically sound basis for the stochastic optimization model, allowing it to 
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determine a network design that performs effectively across a wide spectrum of possible future 
outcomes. 

 

RESULTS & DISCUSSION 
The computational results presented below in this study demonstrate the application of a 

scenario-based stochastic optimization approach to design a sustainable closed-loop supply chain 
(CLSC) network for a multi-product, single-period system in Benin City, Nigeria. Focusing on five 
beverage products Coke, Fanta, Sprite, Big Cola, and Eva the analysis integrates forward and 
reverse logistics to optimize product allocation, minimize costs, and reduce environmental impact. 
The model incorporates key stages such as manufacturing, warehousing, retailing, disposal, 
recycling, recovery, redistribution, and remanufacturing, addressing uncertainties in demand and 
operational variables. 

 

Table 3. 

Optimization of the Stochastic Sustainable Closed Loop Supply Chain Network  

(Multi-Product, Single-Period, and Multi Stage) 

Product Product allocation 

Scenarios in (‘000’) 

1 2 3 4 5 6 7 8 9 10 

Fanta Manufacturing Plant 118 134 92 129 114 113 178 129 58 156 

Warehouse 144 201 119 132 106 129 159 91 96 142 

Retailers 129 143 128 132 86 114 149 109 77 151 

Disposals 111 151 515 131 114 117 128 115 115 101 

Recyclers 121 102 115 185 141 174 154 102 91 110 

Recovery 152 106 114 123 140 136 185 100 72 115 

Redistributors 108 105 105 177 111 147 155 124 109 176 

Remanufacturing 125 115 90 106 169 119 190 107 124 108 

Sprite 

 

Manufacturing Plant 98 116 813 956 88 78 142 96 796 115 

Warehouse 74 91 815 972 119 119 116 82 825 120 

Retailers 38 88 845 936 97 104 92 108 785 104 

Disposals 104 113 858 943 98 124 115 87 802 106 

Recyclers 106 119 852 961 129 67 101 99 753 57 

Recovery 81 106 836 926 118 104 85 87 791 145 

Redistributors 81 61 812 939 142 92 132 91 819 103 

Remanufacturing 95 107 852 908 99 111 121 97 809 77 

Big Cola 

 

Manufacturing Plant 84 153 132 121 172 124 113 111 925 84 

Warehouses 111 128 128 107 129 98 153 111 989 101 

Retailers 108 111 112 109 97 104 135 104 936 113 

Disposals 144 118 134 159 152 156 159 102 979 142 

Recyclers 132 99 138 126 143 105 142 82 956 142 

Recovery 79 86 95 88 145 137 149 133 931 118 

Redistributors 116 132 85 97 63 139 147 139 943 127 

Remanufacturing 95 96 46 77 129 77 156 121 958 163 

Eva Manufacturing Plant 805 883 763 833 1027 958 1104 809 692 903 

Warehouse 808 920 763 857 993 952 1088 796 695 907 

Retailers 787 901 776 845 1040 946 1078 773 697 881 

Disposals 808 892 735 878 991 959 1069 803 692 898 

Recyclers 816 873 760 834 969 950 1077 792 690 896 



Journal of Entrepreneurship & Business, Vol. 06, No. 03 (2025) 

E-ISSN 2721-706X 297 

Source: Researchers compilation, 2025 
 

Table 3 presents the optimized product allocation across a multi-stage supply chain network 
for five beverage products (Coke, Fanta, Sprite, Big Cola, and Eva) under ten different demand 
scenarios. The data demonstrates how quantities flow through each stage of the closed-loop system, 
from initial manufacturing to final remanufacturing, with all values expressed in thousands of units. 
The analysis reveals significant variations in product movement across scenarios, highlighting how 
the stochastic optimization approach effectively manages demand uncertainty. For instance, Sprite 
shows particularly high volumes in Scenarios 3 and 4, with manufacturing plant outputs reaching 
813,000 and 956,000 units respectively, while Eva consistently maintains high throughput across 
most scenarios, peaking at 1,104,000 units in Scenario 7. A critical finding emerges from the 
recovery and remanufacturing data, where PET bottle reuse rates approach 100% for several 

products. This is particularly evident in Big Cola's Scenario 9, where 958,000 remanufactured units 
nearly match the original 925,000 manufactured units, demonstrating near-perfect material 
circularity. Similarly, Fanta's Scenario 7 shows 190,000 remanufactured units exceeding the initial 
178,000 production, indicating additional recovered materials entering the system. The 
environmental implications become apparent when examining disposal versus recycling figures. 
Products like Coke and Sprite show substantial recycling volumes relative to disposal, suggesting 
efficient reverse logistics operations. The consistent flow of materials from disposal centers to 
recyclers and back to manufacturing plants confirms the model's effectiveness in closing the 
production loop while maintaining economic viability, as reflected in the total optimized network  
cost of N144,315,000. These results collectively demonstrate how stochastic optimization can 
balance operational efficiency with sustainability objectives in complex supply chain networks. 
In this case, the stochastic optimization technique was adapted to model uncertainties in demand 
across the facilities in the network. The network which consisted of single facility drawn from each 
echelon of the network was optimized using a distribution of data in Table 4.  
 

Table 4. 

Demand Mean for the Five Products 
Demand mean 

scenarios 

1 2 3 4 5 6 7 8 9 10 

Coke 100 110 950 105 120 115 130 100 900 110 

Fanta 120 130 110 125 140 135 150 120 105 130 

Sprite 90 100 850 950 110 105 120 90 800 100 

Big Cola 110 120 105 115 130 125 140 110 950 120 

Eva 800 900 750 850 1000 950 1100 800 700 900 

Source: Researchers compilation, 2025 

 

Recovery 793 905 751 874 995 927 1096 791 705 920 

Redistributors 789 936 771 845 1019 959 1083 808 704 879 

Remanufacturing 811 918 729 870 1013 938 1100 783 679 869 

Coke Manufacturing Plant 66 98 976 92 99 115 111 76 910 139 

Warehouse 87 124 941 111 139 120 130 96 878 96 

Retailer 111 95 932 77 146 120 134 113 897 109 

Disposal 62 133 956 99 124 128 109 97 893 110 

Recycler 89 136 946 86 136 97 105 79 919 113 

Recovery 105 77 967 70 116 131 93 55 887 104 

Redistributor 104 103 122 950 129 150 105 126 870 903 

Remanufacturing 77 108 931 80 105 121 136 111 947 103 



Journal of Entrepreneurship & Business, Vol. 06, No. 03 (2025) 

E-ISSN 2721-706X 298 

Table 4 captures the fundamental demand patterns that drive the stochastic optimization 
model, presenting mean demand values across ten scenarios for five beverage products. The data 
reveals several important insights about market behavior and product performance within the supply 
chain network. Eva emerges as the dominant product in terms of demand volume, maintaining 
consistently high values that exceeds other products. Its demand fluctuates between 700,000 and 
1,100,000 units, with particularly strong performance in Scenario 7. This product's substantial 
market presence significantly influences overall network design decisions and resource allocation 
strategies. The table highlights Sprite's unique demand profile, showing dramatic spikes in Scenarios 
3 and 4 where demand nearly doubles compared to other scenarios. These fluctuations demonstrate 
the product's potential vulnerability to market volatility, requiring particularly robust inventory and 
production planning approaches. Meanwhile, Coke, Fanta and Big Cola exhibit more stable demand 
patterns, though still with noticeable variations between scenarios that reflect real-world market 

uncertainties. Scenario 7 stands out as a period of generally elevated demand across most products, 
suggesting potential seasonal or market-wide factors that would require additional supply chain 
capacity. Conversely, Scenario 9 shows the most pronounced demand reduction for Eva while 
maintaining strong performance for Coke, indicating shifting product preferences that the 
optimization model must accommodate. The demand disparities between products with Eva's 
volumes being 7-10 times greater than others underscore the need for differentiated inventory and 
production strategies within the same supply chain network. These variations in scale would 
significantly impact facility sizing, transportation planning, and resource allocation decisions 
throughout the network. 

 

Table 5. 

Demand Standard Deviation, Environmental Impact, Reverse Logistics Cost/Unit, and 

Recycling Cost for the Five Products 

Products Standard Deviation Environmental Impact Reverse Logistics Cost Recycling Capacity 

Coke 20 5 2000 1500 

Fanta 24 3 1500 100 

Sprite 18 4 2500 200 

Big Cola 22 6 200 1800 

Eva 16 2 1200 1200 

Source: Researchers compilation, 2025 

 
Table 5 provides essential operational and environmental metrics for each of the five beverage 

products, offering critical inputs for the stochastic optimization model. The data reveals distinct 
characteristics that shape the supply chain network's economic and environmental performance. The 
standard deviation values highlight differing levels of demand uncertainty across products. Sprite 
demonstrates the highest volatility with a standard deviation of 18, suggesting less predictable 
demand patterns compared to Eva, which shows greater stability with a deviation of 16. This 
variability directly impacts inventory management and production planning strategies, requiring 
more flexible solutions for products like Sprite to prevent stockouts or overstocking. Big Cola stands 

out with the highest environmental impact (6 kg CO₂ per unit), likely due to factors such as material 

composition or production complexity. In contrast, Eva shows the lowest impact (2 kg CO₂ per 
unit), indicating more sustainable production or distribution processes. These differences influence 
the network's overall carbon footprint and underscore the need for product-specific environmental 
mitigation strategies. Reverse logistics costs vary significantly, with Sprite incurring the highest 
expenses (2500 per unit), potentially due to complex collection or transportation requirements. Coke 
follows closely at 2000 per unit, while Big Cola presents an interesting case with remarkably low 
reverse logistics costs (200 per unit) paired with high recycling capacity (1800 units). This 
combination suggests efficient recovery processes that make Big Cola particularly suitable for closed-
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loop operations. Recycling capacity figures reveal strategic opportunities for resource recovery. 
Fanta's low capacity (100 units) compared to its demand may indicate bottlenecks in its recycling 
infrastructure, whereas Big Cola's high capacity (1800 units) demonstrates strong circular economy 
potential. These metrics help identify which products would benefit most from investments in 
recycling technologies or collection networks. 

Findings from the tables in table 2, for the various products show that Coke product, Scenario 
9 appears to be the most efficient allocation. In this scenario, 910,000 units were manufactured, with 
878,000 units moving through the warehouse. A total of 893,000 units were collected from retailers 
for disposal. The recycling process yielded 887,000 units for recovery, and notably, 947,000 units 
were sent to the manufacturing plant for remanufacturing. The fact that the quantity sent for 
remanufacturing exceeds the original production volume (910,000 units) suggests that the reverse 
logistics network is effectively capturing PET bottles from beyond a single product lifecycle. This 

high level of material recovery likely contributes to a reduction in virgin raw material costs, thereby 
improving the overall cost-efficiency of the system. For the Fanta product, the optimal allocation is 
observed in Scenario 7. This scenario shows an initial production of 178,000 units and a 
warehousing flow of 159,000 units. The model allocated 128,000 units for disposal after consumer 
use. From a recycling volume of 154,000 units, 185,000 units were recovered, and 190,000 units 
were ultimately sent for remanufacturing. The remanufacturing quantity again surpasses the initial 
production, indicating a robust recovery mechanism that captures additional materials from the 
market, which can substitute for virgin PET and potentially lower material procurement expenses. 
In the case of Sprite, Scenario 3 demonstrates a favorable allocation. Manufacturing output was 
956,000 units, with a slightly higher flow of 972,000 units through warehouses, potentially 
indicating pre-existing inventory. A total of 936,000 units were disposed of by consumers. From a 
recycling stream of 961,000 units, 926,000 units were recovered, and 908,000 units were directed to 
remanufacturing. This represents a recovery rate of approximately 94.97% of the manufactured 
quantity for remanufacturing purposes, demonstrating a high degree of material circularity and a 

significant avoidance of virgin material use. The analysis for Big Cola identifies Scenario 9 as 
optimal. The manufacturing plant produced 925,000 units, while warehouse throughput was 
989,000 units; this discrepancy may be attributable to inventory carried over from a previous period, 
a factor not dynamically modeled in this single-period study. Consumer disposal was 979,000 units. 
From a recycling quantity of 956,000 units, 931,000 were recovered, and 958,000 units were sent for 
remanufacturing. The remanufacturing quantity is marginally higher than the original production, 
suggesting a recovery rate approaching 100% for the bottles produced in that cycle, which would 
substantially reduce reliance on new raw materials. Finally, for the Eva product, Scenario 7 shows 
the most effective allocation. A substantial 1,104,000 units were manufactured, with 1,088,000 units 
handled by the warehouse. Consumer returns for disposal amounted to 1,069,000 units. The 
recycling process handled 1,077,000 units, leading to the recovery of 1,096,000 units a figure that 
may be influenced by base stock already present at the recovery facility. A volume of 1,100,000 units 
was sent for remanufacturing. This represents a recovery rate of 99.6% for the remanufacturing feed, 

indicating an exceptionally efficient closed-loop process that minimizes the need for virgin PET and 
its associated costs. 

Sensitivity and Robustness Analysis 
To evaluate the robustness of the proposed stochastic sustainable CLSC model, a sensitivity 

analysis was conducted on the key parameter: the recovery rate (θ). This parameter significantly 
influences the reverse logistics flow and the overall economic and environmental performance of the 

network. The base case value of θ was varied by ±10% and ±20%, and the impact on the total 
network cost (Z1) and total environmental impact (Z2) was observed. 
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Table 6.  

Sensitivity Analysis on Recovery Rate (θ) 

Recovery 

Rate (θ) 

Change 

from Base 

Total Network 

Cost (N'000) 

% Change 

in Cost 

Total Environmental 

Impact (kg CO₂) 

% Change in 

Impact 

0.60 -20% 149, 102 +3.32% 498, 150 +3.49% 

0.675 -10% 146, 885 +1.78% 489, 755 +1.74% 

0.75 (Base) 0% 144, 315 
 

481, 360 
 

0.825 +10% 142, 050 -1.57% 473, 200 -1.70% 

0.90 +20% 139, 521 -3.32% 464, 810 -3.44% 

Source: Researchers compilation, 2025 

 
The results, summarized in Table 6, demonstrate that the model is sensitive to changes in the 

recovery rate, but the responses are logical and stable, indicating robustness. As the recovery rate (θ) 

increases: 

Total Cost Decreases: A higher recovery rate reduces the dependency on virgin raw materials, 

leading to lower procurement and production costs. A 20% increase in θ results in a 3.32% cost 
saving. 

Environmental Impact Decreases: Increased remanufacturing directly reduces the carbon 

footprint associated with producing new PET bottles from virgin materials. A 20% increase 

in θ lowers the environmental impact by 3.44%. 
Conversely, a lower recovery rate increases both cost and environmental impact. This analysis 
underscores the critical importance of investing in efficient collection and sorting systems to 

improve θ. It provides managers with quantitative evidence that capital invested in reverse logistics 
infrastructure can yield significant economic and environmental returns, thereby de-risking such 
strategic decisions. 
 

LIMITATIONS AND FUTURE RESEARCH 
While this study provides valuable insights, several limitations should be acknowledged. 

Firstly, the model is a single-period formulation, which does not capture the dynamic, long-term 
strategic decisions such as multi-period inventory holding, capacity expansion, or the depreciation of 
facilities and equipment. Future research should extend this work into a multi-period horizon. 
Secondly, the sources of uncertainty are primarily focused on demand and cost parameters. Other 
critical uncertainties, such as supplier reliability, transportation lead times, and the quality of 
returned products, were not explicitly modeled. Incorporating these would enhance the model's 
resilience. Thirdly, the social objective is simplified to job creation. A more comprehensive social 
pillar could include metrics for community development, health and safety, and fair labor practices. 
Finally, the scenario generation, while statistically sound, is based on historical data. Future studies 
could employ more advanced forecasting techniques, including machine learning, to generate more 
predictive scenarios, especially for analyzing disruption risks and post-pandemic market shifts. 

 

CONCLUSION  
This study successfully optimized a stochastic sustainable closed-loop supply chain network 

for multi-product, single-period operations in Benin City, Nigeria, focusing on five beverage 
products (Coke, Fanta, Sprite, Big Cola, and Eva). By integrating forward and reverse logistics 
including manufacturing, warehousing, recycling, and remanufacturing the research demonstrated 
how closed-loop systems can simultaneously achieve economic efficiency and environmental 
sustainability. Key findings revealed that 94-100% of PET bottles were recovered and reused, 
significantly reducing reliance on virgin materials and lowering production costs. The total network 
cost was optimized to N144,315,000, while the environmental impact was quantified at 481,360 kg 

of CO₂, underscoring the trade-offs between cost and sustainability. The study highlights the critical 
role of stochastic optimization in managing demand variability, particularly in emerging markets 
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where supply chain disruptions are common. By adopting remanufacturing and recycling strategies, 
businesses can enhance resource efficiency, minimize waste, and contribute to circular economy 
practices. The results also emphasize the importance of designing flexible supply chain networks that 
accommodate uncertainty while maintaining operational and environmental goals. For 
policymakers and industry practitioners, these findings advocate for investments in reverse logistics 
infrastructure and cleaner production technologies. Future research could expand this framework to 
multi-period models, incorporate dynamic pricing strategies, or explore sector-specific adaptations to 
further refine sustainability outcomes. Ultimately, this study provides a replicable blueprint for 
integrating sustainability into supply chain operations, offering both economic and environmental 
benefits for the beverage industry and beyond. 
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