PENGEMBANGAN MODEL KEPUTUSAN LOKASI DAN ALOKASI PADA JEJARING RANTAI PASOK MULTI-ESELON DENGAN PARTICLE SWARM OPTIMIZATION ALGORITHM
Abstract
Pada supply chain design penentuan lokasi fasilitas industri merupakan keputusan yang harus diperhitungkan dengan tepat, karena keputusan lokasi merupakan keputusan jangka panjang. Selain itu, penentuan alokasi ke tiap entitas pada rantai pasok juga harus ditentukan. Shankar et al. (2013) mengembangkan model matematis terkait pemilihan lokasi dan alokasi pada jejaring rantai pasok multi-eselon. Namun model yang dikembangkan tersebut belum memperhitungkan batasan kapasitas armada dan kevariasian produk. Sedangkan jika penggunaan armada lebih besar dibandingkan dengan armada yang tersedia batasan kapasitas armada harus diperhitungkan, dan pada umumnya saat ini perusahaan memproduksi produk lebih dari satu jenis. Oleh karena itu penelitian ini akan mengembangkan model Shankar et al. (2013) menjadi model keputusan lokasi dan alokasi yang mempertimbangkan batasan kapasitas armada dan variasi produk. Model yang telah dikembangkan kemudian diuji coba menggunakan dua metode, yaitu metode optimasi dan Particle Swarm Optimization (PSO) Algorithm. Hasil yang diperoleh dari dua uji coba tersebut adalah, total biaya dari metode PSO 8% lebih tinggi dibandingkan dengan metode optimasi, namun waktu yang dibutuhkan PSO untuk menyelesaikan model lima kali lebih cepat dibanding metode optimasi, sehingga dapat dikatakan bahwa metode PSO lebih efektif untuk digunakan. Analisis sensitivitas menunjukkan bahwa fungsi tujuan total biaya sensitif terhadap perubahan parameter demand dan tidak sensitif terhadap perubahan parameter kapasitas.
Downloads
References
Bowersox, D.J., Closs, D.J., Cooper, M.B., Bowersox, J.C., (2013), Supply Chain Logistics Management, Fourth Edition, New York: McGraw-Hill.
Chopra, S., Meindl, P., (2013), Supply Chain Management: Strategy, Planning, and Operation, Fifth Edition, Pearson Education International, New Jersey USA.
Christopher, M., (1998), Logistics and Supply Chain Management: Strategies for Reducing Cost and Improving Service, England: Financial Times.
Coyle, J.J., Langley ,C.J., Gibson, B.J., Novack, R.A., Bardi, E.J., (2008), Supply Chain Management: A Logistics Perspective, USA: South-Western Cengage Learning.
Hosseinenezhad, S.J., Jabalameli, M.S., Naini, S.G.J., (2013), “A Fuzzy Algorithm for Continuous Capacitated Location Allocation Model with Risk Consideration”, Applied Mathematical Modelling.
Hugos, M., (2003), Essentials of Supply Chain Management, USA: Wiley.
Melo M.T., Nickel S., Saldanha-da-Gama F., (2009), “Facility Location and Supply Chain Management – A Review”, European Journal of Operational Research, Vol 196, pp. 401-412.
Mousavi, S.M., (2013), “Capacitated Location Allocation Problem with Stochastic Location and Fuzzy Demand: A Hybrid Algorithm”, Applied Mathematical Modelling, Vol 37, pp. 5109-5119.
Parung, J., (2008), Buku Ajar Metodologi Penelitian, Jurusan Teknik Industri, Universitas Surabaya.
Pujawan, I.N., (2005), Supply Chain Management, Surabaya: Guna Widya.
Santoso, B., Willy, P., (2011), Metoda Metaheuristik Konsep dan Implementasi, Surabaya: Guna Widya.
Shankar, B.L., Basavarajappa, S., Chen, J.C.H., Kadadevaramath, R.S., (2013), “Location and Allocation Decisions for Multi-echelon Supply Chain Network – A Multi-Objective Evolutionary Approach”, Expert Systems with Application, Vol 40, pp. 551-562.
Simchi-Levi D., Kaminsky P., Simchi-Levi Edith, (2008), Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies, Third Edition, New York: McGraw-Hill.
Wang, K.J., Makond, B., Liu S.Y., (2011), “Location and Allocation Decisions in A Two-Echelon Supply Chain with Stochastic Demand – A Genetic-Algorithm Based Solution”, Expert Systems with Application, Vol 38, pp. 6125-6131.
Wang, S., Watada, J., (2012), “A Hybrid Modified PSO Approach to VaR-Based Facility Location Problems with Variable Capacity in Fuzzy Random Uncertainty”, Information Sciences, Vol 192, pp. 3-18.
- Articles published in CALYPTRA are licensed under a Creative Commons Attribution-ShareAlike 4.0 International license. You are free to copy, transform, or redistribute articles for any lawful purpose in any medium, provided you give appropriate credit to the original author(s) and the journal, link to the license, indicate if changes were made, and redistribute any derivative work under the same license.
- Copyright on articles is retained by the respective author(s), without restrictions. A non-exclusive license is granted to CALYPTRA to publish the article and identify itself as its original publisher, along with the commercial right to include the article in a hardcopy issue for sale to libraries and individuals.
- By publishing in CALYPTRA, authors grant any third party the right to use their article to the extent provided by the Creative Commons Attribution-ShareAlike 4.0 International license.