PENGARUH PARAMETER PROSES BUBUT TERHADAP LAJU PEMBUANGAN MATERIAL DAN KEKASARAN PERMUKAAN PADA DRY MACHINING BAJA AISI 1045
Abstract
Abstract—Currently, machining, especially in the turning process using coolant fluids, is widely utilized in manufacturing. Coolant fluids are employed to reduce machining temperatures resulting from friction, especially at the cutting tool, which can lead to reduced tool lifespan, faster wear, and increased surface roughness. However, the positive impact of coolant usage is often accompanied by negative consequences. Dry Machining serves as an alternative machining method to achieve desired machining results. The machining parameters involved are cutting speed (V), feed depth (a), and feed rate (f) in the roughing process for AISI 1045 steel. This study aims to investigate the influence of these machining parameters on Material Removal Rate (MRR) and surface roughness (Ra) in dry machining. The experimental design adopts a three-level full factorial approach. From the Ra data, the highest independent influence is observed in (f) with a 0.7174 μm increase in Ra for each level. Regarding parameter interaction, the highest influence on Ra is the interaction between (f) and (a), with a 0.012 μm increase for each level. In terms of MRR data, the highest independent influence is (V) with a 26,407.810 mm3/min increase for each level. The highest interaction influence on MRR is the interaction between (a) and (V), resulting in a 6,778,575 mm3/min increase for each level.
Keywords: dry machining, surface roughness, material removal rate, AISI 1045, three-level full factorial
Abstrak—Saat ini, pemesinan khususnya pada proses bubut menggunakan cairan coolant umum digunakan dalam manufaktur. Cairan coolant digunakan untuk mengurangi temperatur pemesinan akibat gesekan yang dihasilkan selama pemesinan, terutama pada pahat. Panas tersebut dapat menyebabkan pengurangan umur pahat, keausan yang lebih cepat, dan peningkatan kekasaran permukaan hasil pemesinan. Namun, dampak positif penggunaan coolant sering kali disertai dampak negatif. Dry Machining menjadi alternatif pemesinan untuk mencapai hasil pemesinan yang diinginkan. Parameter pemesinan yang digunakan adalah kecepatan potong (V), kedalaman pemakanan (a), dan gerak pemakanan (f). Jenis proses bubutnya adalah roughing. Penelitian ini dilakukan untuk mengetahui pengaruh parameter pemesinan bubut terhadap MRR dan Ra pada dry machining AISI 1045. Desain eksperimen dilakukan dengan three-level full factorial. Dari data Ra, pengaruh tertinggi secara independen adalah f sebesar 0,7174 μm terhadap Ra. Sedangkan secara interaksi parameter, pengaruh tertinggi terhadap Ra adalah interaksi f dengan a. sebesar 0,012 μm. Dari data MRR,, menunjukkan pengaruh tertinggi secara independen adalah V, sebesar 26.407,810 mm3/min. Secara interaksi antar parameter, pengaruh tertinggi terhadap respon MRR adalah interaksi a dan V sebesar 6.778,575 mm3/min. Secara keseluruhan, jika dry dibandingkan dengan wet machining cenderung memberikan Ra yang lebih baik karena adanya pendinginan. Namun, pilihan tersebut harus mempertimbangkan aspek biaya dan dampak lingkungannya.
Kata kunci: dry machining, kekasaran permukaan, laju pembuangan material, AISI 1045, three-level full factorial
Downloads
References
Abebe, A. D., Jiru, M. G., & Kabeta, G. (2021). Comparative Study on Dry and Wet Machining During Double Tool Turning of AISI 1045 Steel. Int. J. Innov. Sci. Eng. Technol. 8(9). 71-101. https://www.researchgate.net/publication/3545434 18.
Alemayoh, G. H., Singh, B., & Tesfamariam, B. B. (2023). Experimental and Numerical Investigation of Dry Turning AISI 1030 Carbon Steel Using CNC Lathe Machining. Engineering Research Express, 5(1), 015007. https://doi.org/10.1088/2631-8695/acb11e.
Bagaber, S. A., & Yusoff, A. R. (2018). Sustainable Optimization of Dry Turning of Stainless Steel Based On Energy Consumption and Machining Cost. Procedia CIRP. 77(2). 397-400. doi: 10.1016/j.procir.2018.08.300.
Canter, N. M. (2003). The Possibilities and Limitations of Dry Machining. Tribology & Lubrication Technology, 59(11), 30.
Edem, I. F., Balogun, V. A., Nkanang, B. D., John, E. A., Archibong, A. E., Obio, D. E., & Kelvin Joseph, A. K. (2020). Surface Roughness Optimisation in Turning using Taguchi Approach. ABUAD Journal of Engineering Research and Development (AJERD). 3(1). 147-153. https://www.researchgate.net/publication /343166952.
Elbah, M., Laouici, H., Benlahmidi, S., Nouioua, M., & Yallese, M. A. (2019). Comparative Assessment of Machining Environments (Dry, Wet and MQL) in Hard Turning of AISI 4140 Steel with CC6050 Tools. The International Journal of Advanced Manufacturing Technology. 105(5-6). 2581-2597. doi: 10.1007/s00170-019-04403-9.
Fahrizal, F., Priyono, P., Mau, S., & Dos Santos, A. D. D. (2022). Effect of Cutting Parameters on Low Carbon Steel Surface Roughness in the Conventional Turning Process. Jurnal Pendidikan Teknik Mesin, 9(1), 28-38. doi: 10.36706/jptm.v9i1.17256.
Ginting, A. (2003). High Speed Machining of AISI 01 Steel With Multilayer Ceramic CVD – Coated Carbide. Tool Life and Surface Intergrity, 14(3).
Groover, (2002). Fundamentals of Modern Manufacturing; Materials Processing and System, John Wiley and Sons, New York.
Grzesik, W., & Nieslony, P. (2003). Thermophysical-Property-Based Selection of Tool Protective Coatings for Dry Machining of Steels. J. Manuf. Sci. Eng., 125(4), 689-695.
Ikhtiardi, I. (2023). Pengaruh Cutting Speed Terhadap Keausan Mata Pahat Karbida CVD Berlapis pada Pembuatan Baja AISI 1045. Buletin Utama Teknik. 18(2). https://jurnal.uisu.ac.id/index.php/but/article/view/6641.
John A. Schey, 2009, Proses Manufaktur : Introduction to Manufacture Processes edisi kedua, Department of Mechanical Engineering, University of Waterloo, Ontario.
Juhana, O. dan Suratman, M., (2000). Menggambar Teknik Mesin dengan Standar ISO. Pustaka Grafika, Bandung.
Kalpakjian, S., & Schmid, S. (2022). Manufacturing, Engineering and Technology SI 8th Edition. Pearson Education.
Mackerle, J. (1999). Finite Element Analysis and Simulation of Machining: A Bibliography. Journal of Materials Processing Technology (pp. 17-24).
Magalhaes, L. C., Carlesso, G. C., López de Lacalle, L. N., Souza, M. T., de Oliveira Palheta, F., & Binder, C. (2022). Tool Wear Effect on Surface Integrity in AISI 1045 Steel Dry Turning. Materials, 15(6), 2031. doi: 10.3390/ma15062031.
Merchant, M. E. (1944). Basic Mechanics of The Metal-Cutting Process. https://doi.org/10.1115/1.4009380.
Nair, S. S., Ramkumar, T., & Netto, F. (2019). Experimental Investigation of Dry Turning of AISI 1040 Steel with TiN Coated Insert. Engineering Research Express, 1(2), 025038. https://doi.org/10.1088/2631-8695/ab58d9.
Napid, S., Harahap, M. R., & Nasution, A. H. (2022). Effect of Cutting Parameters on Surface Roughness in Dry Machining of S45C Steel Using Carbide Tools. International Journal of Research and Review (IJRR). 9(12). 669-677. https://doi.org/10.52403/ijrr.20221277.
Rahim, R., Napid, S., Hasibuan, A., Sibuea, S. R., & Yusmartato, Y. (2018). Effect of the Machined Surfaces of AISI 4337 Steel to Cutting Conditions on Dry Machining Lathe. Journal of Physics: Conference Series (Vol. 1007, p. 012064). IOP Publishing. doi :10.1088/1742-6596/1007/1/012064.
Rochim, Taufiq. (1993). Teori dan Teknologi Proses Pemesinan. Institut Teknologi Bandung.
Rochim, Taufiq. (2001). Spesifikasi, Metrologi, dan Kontrol Kualitas Geometrik. Institut Teknologi Bandung.
Rochim, Taufiq. (2007). Klasifikasi Proses Gaya dan Daya Pemesinan. Institut Teknologi Bandung.
Roy, R. S., Dash, S., Mahapatra, T. R., Mishra, D., & Jaypuria, S. (2021). Cutting Performance Analysis of Surface Textured Tools in Dry Turning: Optimisation of Process Parameters. E3S Web of Conferences (Vol. 309, p. 01164). EDP Sciences. doi: 10.1051/e3sconf/202130901164.
Sreejith, P. S., & Ngoi, B. K. A. (2000). Dry Machining: Machining of The Future. Journal of Materials Processing Technology, 101(1-3), 287-291.
Tönshoff, H. K., & Mohlfeld, A. (1997). PVD-Coatings for Wear Protection in Dry Cutting Operations. Surface and Coatings Technology, 93(1), 88-92.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Articles published in CALYPTRA are licensed under a Creative Commons Attribution-ShareAlike 4.0 International license. You are free to copy, transform, or redistribute articles for any lawful purpose in any medium, provided you give appropriate credit to the original author(s) and the journal, link to the license, indicate if changes were made, and redistribute any derivative work under the same license.
- Copyright on articles is retained by the respective author(s), without restrictions. A non-exclusive license is granted to CALYPTRA to publish the article and identify itself as its original publisher, along with the commercial right to include the article in a hardcopy issue for sale to libraries and individuals.
- By publishing in CALYPTRA, authors grant any third party the right to use their article to the extent provided by the Creative Commons Attribution-ShareAlike 4.0 International license.