Studi Toksisitas Akut dari Herbisida Senyawa Aktif Parakuat, Glifosat, dan Metsulfuron pada Cacing Tanah (Eisenia fetida)

  • Pajar Hufaizah Jurusan Biologi, Sekolah Ilmu dan Teknologi Hayati, Insitut Teknologi Bandung, Bandung - Indonesia
  • Ramadhani Eka Putra Jurusan Rekayasa Pertanian, Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi Bandung, Bandung-Indonesia
  • Ida Kinasih Jurusan Biologi, Universitas Islam Negeri Sunan Gunung Djati, Bandung - Indonesia
Abstract Views: 606 times
PDF Downloads: 614 times
Keywords: eisenia fetida, glyphosate, LC50,  metsulfuron, paraquat, toxicity

Abstract

AbstractEarthworm plays important role in the terrestrial ecosystem as decomposer and sensitive to environmental changes. Herbicide application as an effort to improve farm productivity may produce some effects on earthworms. The objective of this study was to find the toxicity level of paraquat, glyphosate, and metsulfuron, the three most common active ingredients of herbicide, on earthworm, Eisenia fetida. Three hundred adult earthworms, weighed between 300 to 600 mg, were divided evenly into one control group and four treatment groups for each herbicide. A dose of 0, 500, 1000, 2000, 4000 mg/kg for paraquat; 0, 2500, 5000, 10000, 20000 mg/kg for glyphosate; and 0, 750, 1500, 3000, 6000 mg/kg for metsulfuron was sprayed and mixed evenly on medium of earthworms medium. Each treatment was replicated 4 times. The mortality rate was recorded daily for 14 days and used as data to calculated LC50 of each herbicide. LC50 of paraquat, glyphosate, and metsulfuron was 951.93 ± 115.63 mg/kg, 5456.36 ± 514.62 mg/kg, and 2599.96 ± 211.85 mg/kg, respectively. On the other hand, the weight of earthworm has a negative correlation with the dose of herbicide applied to the medium. Based on this study, paraquat was the most toxic herbicide followed by metsulfuron and glyphosate.

Keywords: eisenia fetida, glyphosate, LC50,  metsulfuron, paraquat, toxicity

Abstrak— Cacing tanah memiliki peran yang penting di ekosistem terestrial sebagai dekomposer dan peka terhadap pengaruh lingkungan. Penggunaan herbisida sebagai sarana peningkatan produksi lahan pertanian kemungkinan memiliki dampak terhadap cacing tanah. Penelitian ini bertujuan untuk menentukan LC50 (15 hari) dari herbisida kelompok parakuat, glifosat, dan metsulfuron pada Eisenia fetida dan pengaruhnya terhadap perubahan berat cacing tanah. Pada penelitian ini digunakan tiga ratus cacing tanah dewasa (sudah terbentuk klitelum) dengan berat masing-masing antara 300-600 mg yang dibagi menjadi satu kelompok kontrol dan 4 kelompok perlakuan untuk tiap kelompok jenis herbisida. Herbisida didedahkan ke dalam media tempat tinggal cacing sebanyak 0, 500, 1000, 2000, 4000 mg/kg untuk parakuat; 0, 2500, 5000, 10000, 20000 mg/kg untuk glifosat; dan 0, 750, 1500, 3000, 6000 mg/kg untuk metsulfuron. Masing-masing perlakuan dilakukan empat kali pengulangan. Jumlah cacing tanah yang mati dicatat selama 14 hari pengamatan dan pada akhir pengamatan ditentukan nilai LC50 dari setiap herbisida. Nilai LC50 yang didapat pada kelompok parakuat, glifosat, dan metsulfuron adalah sebesar 951.93 ± 115.63 mg/kg, 5456.36 ± 514.62 mg/kg, dan 2599.96 ± 211.85 mg/kg. Berat cacing tanah didapatkan menurun seiringan dengan meningkatnya konsentrasi herbisida. Dengan demikian, dapat disimpulkan bahwa herbisida dari kelompok senyawa aktif parakuat memiliki toksisitas paling tinggi, disusul oleh herbisida dari kelompok senyawa aktif metsulfuron dan glifosat.

Kata kunci: eisenia fetida, glifosat, LC50,  metsulfuron, parakuat, toksisitas

 

Downloads

Download data is not yet available.

References

Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Dai J, Dendooven L, Peres G, Tondoh JE, Cluzeau D & Brun JJ 2013, ‘A review of earthworm impact on soil function and ecosystem services’, European Journal of Soil Science, 64(2), 161-182.

Correira FV & Moreira J 2010, ‘Effects of Glyphosate and 2,4-D on Earthworms (Eisenia foetida) in laboratory tests, Bulletin of Environmental Contamination and Toxicology, 85(3), 264-268.

De Santo FB, Guerra N, Vianna MS, Torres JPM, Marchioro CA, Niemeyer JC 2019, ‘Laboratory and field test for risk assessment of metsulfuron-methyl-based herbicides for soil fauna’, Chemosphere, 222, 645-655.

De Silva PMCS, Pathiratne A & van Gestel CAM 2009, ‘Influence of temperature and soil type on the toxicity of three pesticide to Eisenia andrei’, Chemosphere, 76(10), 1410-1415.

Dhadich, SM, Dhadich, H & Verma, RC 2008, ‘Comparative study on storage of fruits and vegetables in evaporative cool chamber an in ambient’, Internasional Journal of Food Engineering, 2, 1-11.

Dominguez A, Brown GG, Sautter KD, de Oliveira CMR, de Vasconcelos EC, Niva CC, Bartz MLC & Bedano JC 2016, ‘Toxicity of AMPA to the earthworm Eisenia andrei Bouche, 1972 in tropical artificial soil. Scientific Reports, 6, 19731.

Edwards CA & Bohlen PJ 1996, ‘Biology and Ecology of Earthworms’, London : Chapman and Hall.

Gaupp-Berghausen M, Hofer M, Rewald B & Zaller JG 2015,’ Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations’, Scientific Reports, 5, 12886.

Haimi J 2000, ‘Decomposer Animals and Bioremediation of Soils’, Environmental Pollution, 107, 233-238.

Hong WH, Meier PG & Deininger RA 1988, ‘Estimation of a single probit line from multiple toxicity test data,’ Aquatic Toxicology, 12, 193-202.

Jones CG, Lawton JH & Shachak M 1994, ‘Organisms as ecosystem engineers’, Oikos, 69, 373-386.

Lewis KA, Tzilivakis J, Warner D & Green A 2016, ’An international database for pesticide risk assessment and management’, Human and Ecological Risk Assessment, 22, 1050-1064.

Muangphra P, Kwankua W & Gooneratne R 2014, ‘Genotoxic effects of glyphosate or paraquat on earthworm coelomocytes’, Environmental Toxicology, 29(6), 612-620.

OECD 1984, ‘Earthworm Acute Toxicity Tests – OECD Guideline for Testing of Chemicals’ http://www.oecd.org/chemicalsafety/risk-assessment/1948293.pdf. (18 Februari 2014).

Paoletti MG & Bressan M 1996, ‘Soil invertebrates as bioindicators of human disturbance’, Critical Reviews in Plant Sciences, 15(1), 21-62.

Parte SG, Mohekar AD & Kharat AS 2017, ‘Microbial degradation of pesticide: a review’, African Journal of Microbiology Research, 11, 992-1012.

Pelosi C, Toutous L, Chiron F, Dubs F, Hedde M, Muratet A, Ponge JF, Salmon S & Makowski D 2013, ‘Reduction of pesticide use can increase earthworm populations in wheat crops in a European temperate region’, Agriculture, Ecosystem & Environment, 181, 223-230.

Piola L, Fuchs J, Oneto ML, Basack S, Kesten E & Casabe N 2013, ‘Comparative toxicity of two glyphosate-based formulation to Eisenia andrei under laboratory conditions’, Chemosphere, 91, 545-551.

Pochron S, Simon L, Mirza A, Littleton A, Sahebzada F & Yudell M 2020, ‘Glyphosate but not Roundup ® harms earthworms (Eisenia fetida)’, Chemosphere, 241, 125017.

Relyea RA 2005, ‘The lethal impacts of Roundup and predatory stress on six species of North American Tadpoles. Archives of Environmental Contamination and Toxicology, 48, 351-357.

Santadino M, Coviella C & Momo F 2014, ‘Glyphosate sublethal effects on the population dynamics of the Earthworm Eisenia fetida (Savigny, 1826)’, Water Air Soil Pollution, 225, 2207.

Sari, YK, Niswati, A, Arif, MAS & Yusnaini S 2015, ‘Pengaruh sistem olah tanah dan aplikasi herbisida terhadap populasi dan biomasa cacing tanah pada pertanaman ubi kayu (Manihot utilissima), J. Agrotek. Tropika, 3(3), 422-426.

Sartori F & Vidrio E 2018, ‘Environmental fate and ecotoxicology of paraquat: a California perspective’, Toxicology & Environmental Chemistry, 100, 479-517.

Scheu S 2003, ‘Effects of earthworms on plant growth: patterns and perspectives’, Pedobiologia, 47, 846-856.

Tilman D, Cassman KG, Matson PA, Naylor R & Polasky S 2002, ‘Agricultural sustainability and intensive production practices’, Nature, 418, 671-677.

Van Groenigen JW, Lubbers IM, Vos HMJ, Brown GG, De Deyn GB & van Groenigen KJ 2014, ’Earthworms increase plant production: a meta-analysis’, Scientific Reports, 4, 6365.

Verrel P & van Buskirk E 2004, ‘As the worm turns: Eisenia fetida avoids soil contaminated by a glyphosate-based herbicide’, Bulletin of Environmental Contamination and Toxicology, 72, 219–224.

Walker A, Cotterill EG & Welch SJ 1989, ‘Adsorption and degradation of chlorsulfuron and metsulfuron-methyl in soils from different depths’, Weed Research, 29(4), 281-287.

Woodburn AT 2000, ‘Glyphosate: production, pricing and use worldwide’, Pest Management Science, 56, 309-312.

Yasmin S & D’Souza D, ‘Effects of pesticides on the growth and reproduction of earthworm: A review’, Applied and Environmental Soil Science, 2010, 678360.

Zaller JG, Heigl F, Ruess L, Grabmaier A 2014, Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Scientific Reports, 4, 5634.

Zhou C, Wang YJ, Li CC, Sun RJ, Yu YC & Zhou DM 2013, ‘Subacute toxicity of copper and glyphosate and their interaction to earthworm (Eisenia fetida)’, Environmental Pollution, 180, 71-77.

Published
2021-08-26
How to Cite
Hufaizah, P., Putra, R. E., & Kinasih, I. (2021). Studi Toksisitas Akut dari Herbisida Senyawa Aktif Parakuat, Glifosat, dan Metsulfuron pada Cacing Tanah (Eisenia fetida). Keluwih: Jurnal Sains Dan Teknologi, 2(2), 64-69. https://doi.org/10.24123/saintek.v2i2.3998