Pengaruh jenis Spesies Pillaring Agent Logam Si dalam proses Pilarisasi Bentonit Alam

  • Restu Kartiko Widi Program Studi Teknik Kimia, Fakultas Teknik, Universitas Surabaya, Surabaya-Indonesia
  • Emma Savitri Program Studi Teknik Kimia, Fakultas Teknik, Universitas Surabaya, Surabaya-Indonesia
Abstract Views: 3 times
PDF Downloads: 5 times
Keywords: pillarization, si, teos, bentonite, pilarisasi, si, teos, bentonit

Abstract

Abstract—The pillarization process of natural bentonite from Pacitan, East Java has been carried out using the metal species Si in Na-silicate and TEOS. The pillarization process is carried out using direct pillarization and indirect pillarization methods. In this research, the number of moles of metal pillaring agent used was 5 mmol/gram bentonite. The pillarization process is carried out by mixing the natural bentonite suspension and pillaring agent at a temperature of 80oC and stirring for 5 hours using a hot plate stirrer. Pillars were formed in the calcination and oxidation stages at a temperature of 500oC using N2 and O2 gas flows for 1 hour and 5 hours respectively. The resulting material was characterized using the FTIR spectroscopy method, X-ray diffraction and N2 gas adsorption using the BET method. The characterization results show that TEOS species can form better and more homogeneous pore structures compared to silicate species. The direct pillarization method provides better and more homogeneous pillar heights compared to the indirect pillarization method. However, the pore size obtained is still on the micropore size scale observed using the N2 gas adsorption method with the BET method.

Keywords: pillarization, si, teos, bentonite

 

Abstrak—Telah dilakukan proses pilarisasi bentonit alam asal Pacitan, Jawa Timur menggunakan spesies logam Si dalam Na-silikat dan TEOS. Proses pilarisasi yang dilakukan menggunakan metode pilarisasi langsung dan pilarisasi tidak langsung. Pada penelitian ini jumlah mol logam pillaring agent yang digunakan adlah 5 mmol/gram bentonit. Proses pilarisasi dilakukan dengan mencampurkan suspensi bentonit alam dan pillaring agent pada suhu 80oC dan diaduk selama 5 jam menggunakan hot plate stirrer. Pilar dibentuk pada tahap kalsinasi dan oksidasi pada suhu 500oC menggunakan aliran gas N2 dan O2 masing-masing selama 1 jam dan 5 jam. Material yang dihasilkan dikarakterisasi menggunakan metode spektroskopi FTIR, difraksi sinar-X dan adsorpsi gas N2 dengan metode BET. Hasil karakterisasi menunjukkan bahwa spesies TEOS dapat membentuk struktur pori lebih baik dan lebih homogen dibandingkan dengan spesies silikat. Metode plarisasi langsung memberikan tinggi pilar lebih baik dan lebih homogen dibandingkan dengan metode pilarisasi tidak langsung. Namun demikian ukuran pori yang diperoleh masih dalam skala ukuran mikropori yang diamati menggunakan metode adsorpsi gas N2 dengan metode BET.

Kata kunci: pilarisasi, si, teos, bentonit

 

Downloads

Download data is not yet available.

References

Ajduković, M., Jović-Jovičić, N., Milutinovic-Nikolic, A., Banković, P., Mojović, Z., 2022. The influence of clay modification on electrochemical behavior of quinhydrone. Tehnika 77, 9–14. https://doi.org/10.5937/tehnika2201009A

Baloyi, J., Ntho, T., Moma, J., 2018a. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: a review. RSC Adv 8, 5197–5211. https://doi.org/10.1039/C7RA12924F

Baloyi, J., Ntho, T., Moma, J., 2018b. A Novel Synthesis Method of Al/Cr Pillared Clay and its Application in the Catalytic Wet Air Oxidation of Phenol. Catal Letters 148, 3655–3668. https://doi.org/10.1007/s10562-018-2579-x

Budhyantoro, A., & Widi, R. K. (2013). Effect of the Surfactant Molecule as Intercalating Agent toward Natural Bentonite Structure. 8(2), 91–96.

Cardona, Y., Węgrzyn, A., Miśkowiec, P., Korili, S.A., Gil, A., 2022. Catalytic photodegradation of organic compounds using TiO2/pillared clays synthesized using a nonconventional aluminum source. Chemical Engineering Journal 446, 136908. https://doi.org/https://doi.org/10.1016/j.cej.2022.136908

Fatimah, I., Fadillah, G., Yanti, I., Doong, R., 2022. Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review. Nanomaterials. https://doi.org/10.3390/nano12050825

Freitas, W., Trigueiro, P., Marinho, T., Honorio, L.M., Silva-Filho, E.C., Furtini, M.B., Cecília, J.A., Fonseca, M.G., Osajima, J., 2022. The Role of Clay Mineral-Derived Photocatalysts in Insights of Remediation. Ceramics. https://doi.org/10.3390/ceramics5040063

Georgescu, A.-M., Nardou, F., Zichil, V., Nistor, I.D., 2018. Adsorption of lead(II) ions from aqueous solutions onto Cr-pillared clays. Appl Clay Sci 152, 44–50. https://doi.org/https://doi.org/10.1016/j.clay.2017.10.031

Harrington, G.F., Santiso, J., 2021, Back-to-Basics tutorial: X-ray diffraction of thin films. J Electroceram 47, 141–163. https://doi.org/10.1007/s10832-021-00263-

Ilic, I., Jovic-Jovicic, N., Bankovic, P., Mojović, Z., Loncarevic, D., Gržetić, I., Milutinovic-Nikolic, A., 2019. Adsorption of nicotine from aqueous solutions on montmorillonite and acid-modified montmorillonite. Science of Sintering 51, 93–100. https://doi.org/10.2298/SOS1901093I

Jiang, T., Zhang, W., Ilango, A.K., Feldblyum, J.I., Wei, Z., Efstathiadis, H., Yigit, M. V, Liang, Y., 2023. Surfactant-Modified Clay for Adsorption of Mixtures of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Solutions. ACS Applied Engineering Materials 1, 394–407. https://doi.org/10.1021/acsaenm.2c00096

Kalmakhanova, M.S., Diaz de Tuesta, J.L., Massalimova, B.K., Gomes, H.T., 2020. Pillared clays from natural resources as catalysts for catalytic wet peroxide oxidation: Characterization and kinetic insights. Environmental Engineering Research 25, 186–196. https://doi.org/10.4491/eer.2018.402

Kartiko Widi, R., Suciani, I., Savitri, E., Reynaldi, R., & Budhyantoro, A. (2020). Photocatalytic decolorization of Basic Blue 41 using TiO 2 -Fe 3 O 4 -bentonite coating applied to ceramic in continuous system. Chemical Engineering Communications, 207(2), 203–212. https://doi.org/10.1080/00986445.2019.1578756

Kotal, M., Bhowmick, A.K., 2015. Polymer nanocomposites from modified clays: Recent advances and challenges. Prog Polym Sci 51, 127–187. https://doi.org/10.1016/J.PROGPOLYMSCI.2015.10.001

Kumararaja, P., Manjaiah, K.M., Datta, S.C., Sarkar, B., 2017. Remediation of metal contaminated soil by aluminium pillared bentonite: Synthesis, characterisation, equilibrium study and plant growth experiment. Appl Clay Sci 137, 115–122. https://doi.org/https://doi.org/10.1016/j.clay.2016.12.017

Liang, X., Qi, F., Liu, P., Wei, G., Su, X., Ma, L., He, H., Lin, X., Xi, Y., Zhu, J., Zhu, R., 2016. Performance of Ti-pillared montmorillonite supported Fe catalysts for toluene oxidation: The effect of Fe on catalytic activity. Appl Clay Sci 132–133, 96–104. https://doi.org/https://doi.org/10.1016/j.clay.2016.05.022

Ma, L., Zhu, J., He, H., Tao, Q., Zhu, R., Shen, W., Theng, B.K.G., 2014. Al13-pillared montmorillonite modified by cationic and zwitterionic surfactants: A comparative study. Appl Clay Sci 101, 327–334. https://doi.org/10.1016/J.CLAY.2014.08.023

Ma, L., Zhu, J., Xi, Y., Zhu, R., He, H., Liang, X., Ayoko, G.A., 2015. Simultaneous adsorption of Cd(ii) and phosphate on Al13 pillared montmorillonite. RSC Adv 5, 77227–77234. https://doi.org/10.1039/C5RA15744G

Macías-Quiroga, I., Perez, A., Arcila, J.S., Giraldo-Gómez, G., Sanabria-Gonzalez, N., 2022. Synthesis and Characterization of Co/Al-PILCs for the Oxidation of an Azo Dye Using the Bicarbonate-Activated Hydrogen Peroxide System. Catal Letters 152. https://doi.org/10.1007/s10562-021-03788-1

Macías-Quiroga, I.F., Rengifo-Herrera, J.A., Arredondo-López, S.M., Marín-Flórez, A., Sanabria-González, N.R., 2022. Research Trends on Pillared Interlayered Clays (PILCs) Used as Catalysts in Environmental and Chemical Processes: Bibliometric Analysis. The Scientific World Journal 2022, 5728678. https://doi.org/10.1155/2022/5728678

Marković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., Banković, P., 2019. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Appl Clay Sci 182, 105276. https://doi.org/https://doi.org/10.1016/j.clay.2019.105276

Mnasri-Ghnimi, S., Frini-Srasra, N., 2019. Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl Clay Sci 179, 105151. https://doi.org/10.1016/J.CLAY.2019.105151

Mohadi., R., Yusuf, Mathiinul, Hakim., Rahma, Dinta, Astuti., Idha, Royani., Mardiyanto, Mardiyanto. (2023). Pillarization of Sumatera Bentonite by Sodium-assisted As Effective Adsorbent of Anionic Surfactants Sodium Lauryl Sulphate (SLS) Waste. Bulletin of Chemical Reaction Engineering & Catalysis, 18(1):48-58. doi: 10.9767/bcrec.16500

Mohamed, M.E., Saad, G.R., Eid, A.I., Abou El-Khair, M.T., 2019. Modification of Egyptian clay by different organic cations. Egypt J Chem 62, 1761–1769. https://doi.org/10.21608/EJCHEM.2019.10855.1697

Qian, W., Su, Y., Yang, X., Yuan, M., Deng, W., Zhao, B., 2017. Experimental study on selective catalytic reduction of NO with propene over iron based catalysts supported on aluminum pillared clays. Journal of Fuel Chemistry and Technology 45, 1499–1507. https://doi.org/https://doi.org/10.1016/S1872-5813(17)30067-1

Rinaldi., N., Novi, Liana, Sari., S., Sumari., Anis, Kristiani., Egi, Agustian., Robert, Ronald, Widjaya., Adep, Dwiatmoko. (2024). Performance of sulfided NiMo catalyst supported on pillared bentonite Al and Ti under hydrodeoxygenation reaction of guaiacol. International Journal of Renewable Energy Development, doi: 10.61435/ijred.2024.60060

Savitri, E., Widi, R. K., & Budhyantoro, A. (2015). The effect of the calcinations temperature during synthesis of TiO2-Fe3O4-bentonite as photocatalyst material. Journal of Chemical and Pharmaceutical Research, 7(9), 70–75.

Seydibeyoglu, M.O., Demiroglu, S., Atagur, M., Ocaktan, S.Y., 2017. Modification of Clay Crystal Structure with Different Alcohols. Natural Resources 08, 709–715. https://doi.org/10.4236/nr.2017.811044

Widi, R. K., & Budhyantoro, A. (2014). Catalytic performance of TiO2-Fe3O4 supported bentonite for photocatalytic degradation of phenol. International Journal of Applied Engineering Research, 9(23), 18753–18758.

Widi, R. K., Budhyantoro, A., & Christianto, A. (2017). Phenol hydroxylation on Al-Fe modified-bentonite: Effect of Fe loading, temperature and reaction time. IOP Conference Series: Materials Science and Engineering, 273(1), 1–7. https://doi.org/10.1088/1757-899X/245/1/012007

Widi, R. K., Budhyantoro, A., & Riadi, L. (2010). Esterification of palmitic acid over acid catalyst from modified bentonite. International Journal of Applied Chemistry, 6(1), 11–18.

Widi, R. K., Budhyantoro, A., & Savitri, E. (2014). Catalytic performance of Al-HDTMA bentonite impregnated Fe on phenol hydroxylation. International Journal of Applied Engineering Research, 9(20), 7521–7529.

Widi, R. K., Budhyantoro, A., & Savitri, E. (2015). Use of TiO2-Fe3O4 pillared bentonite as photocatalyst in photodegradation of basic blue. Journal of Chemical and Pharmaceutical Research, 7(9), 183–188.

Widi, R. K., Chrisnasari, R., Budhyantoro, A., & Christie, S. D. (2020). Immobilization of glucose oxidase on acid activated-bentonite and its performance examination. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 82(3), 113–124.

Widi, R. K., Savitri, E., Angelina, O., Caroline, O. J. S., & Budhyantoro, A. (2018). Antibacterial inactivation of Escherichia coli after TiO2-Fe3O4-Bentonite photocatalytic treatment. International Journal on Advanced Science, Engineering and Information Technology, 8(6), 2367–2373. https://doi.org/10.18517/ijaseit.8.6.3884

Widi, R. K., Savitri, E., Budhyantoro, A., Yasaputera, R., & Gunardi, J. (2020). Application of Photocatalyst Material Bentonite Ti Based as Antimicrobial Paint. International Journal on Advanced Science, Engineering and Information Technology, 10(6), 2498–2503. https://doi.org/10.18517/ijaseit.10.6.9877

Widi, R. K., Trisulo, D. C., Budhyantoro, A., & Chrisnasari, R. (2017). Preparation of immobilized glucose oxidase wafer enzyme on calcium-bentonite modified by surfactant. IOP Conference Series: Materials Science and Engineering, 223(1). https://doi.org/10.1088/1757-899X/223/1/012050

Yang, Y., Li, F., Xiao, M. et al., 2020, TEOS and Na2SiO3 as silica sources: study of synthesis and characterization of hollow silica nanospheres as nano thermal insulation materials. Appl Nanosci 10, 1833–1844. https://doi.org/10.1007/s13204-020-01330-0

Ye, W., Zhao, B., Gao, H., Huang, J., Zhang, X., 2016. Preparation of highly efficient and stable Fe,Zn,Al-pillared montmorillonite as heterogeneous catalyst for catalytic wet peroxide oxidation of Orange II. Journal of Porous Materials 23, 301–310. https://doi.org/10.1007/s10934-015-0082-y

Yu, R., Wang, S., Wang, D., Ke, J., Xing, X., Kumada, N., Kinomura, N., 2008. Removal of Cd2+ from aqueous solution with carbon modified aluminum-pillared montmorillonite. Catal Today 139, 135–139. https://doi.org/https://doi.org/10.1016/j.cattod.2008.08.015

Published
2025-02-01
How to Cite
Restu Kartiko Widi, & Emma Savitri. (2025). Pengaruh jenis Spesies Pillaring Agent Logam Si dalam proses Pilarisasi Bentonit Alam. Keluwih: Jurnal Sains Dan Teknologi, 6(1), 1-11. https://doi.org/10.24123/saintek.v6i1.6424