Process Design of Benzene Nitrification

  • Rudy Agustriyanto Department of Chemical Engineering, Engineering Faculty, University of Surabaya, Surabaya-Indonesia
  • Lanny Sapei Department of Chemical Engineering, Engineering Faculty, University of Surabaya, Surabaya-Indonesia
  • Endang Srihari Mochni Department of Chemical Engineering, Engineering Faculty, University of Surabaya, Surabaya-Indonesia
  • Puguh Setyopratomo Department of Chemical Engineering, Engineering Faculty, University of Surabaya, Surabaya-Indonesia
Abstract Views: 423 times
PDF Downloads: 205 times
Keywords: hysys, nitration, nitrobenzene, reaction, simulation.


AbstractAspen HYSYS was used to investigate several aspects of process design for benzene nitration. In this study, the frequency factor (ko) and the activation energy (Ea) for benzene nitration were given from the literature. Calculations of chemical and physical  properties were performed automatically on Hysys using the NRTL and UNIQUAC Thermodynamic models. Some aspects of process design were studied, namely: (1) the effect of temperature on the conversion of reactions, (2) the effect of the ratio of sulphuric acid to nitric acid on the synthesis of nitrobenzen in the reactor, and (3) the effect of reactor arrangements ( parallel and series) on reaction conversion. The results showed that the peak of conversion that could be achieved on a single reactor was 96.9% at a ratio of sulfuric acid: nitric acid = 3.5 and a temperature of 50ºC. However, based on this study, it is suggested that the most favorable conditions for nitation of benzene in an isothermal reactor are 50°C and a sulfuric acid:nitric acid ratio of about 2.5 to 3.

Abstrak—Aspen HYSYS digunakan untuk menginvestigasi beberapa aspek  perancangan proses pada nitrasi benzen. Energi aktivasi (Ea) dan faktor frekwensi (ko) untuk reaksi ini diperoleh dari literature. Perhitungan sifat-sifat fisis dan kimia dilakukan secara otomatis pada Hysys dengan menggunakan model Termodinamik NRTL dan UNIQUAC. Beberapa aspek perancangan proses dipelajari dengan simulasi, yaitu: pengaruh suhu pada konversi reaksi, pengaruh rasio asam sulfat terhadap asam nitrat pada sintesa nitrobenzen dalam CSTR (reaktor berpengaduk kontinyu), dan pengaruh susunan reaktor baik seri maupun parallel terhadap konversi reaksi. Hasil penelitian menunjukkan bahwa konversi tertinggi yang dapat dicapai pada CSTR tunggal adalah 96,9 % pada rasio asam sulfat: asam nitrat = 3,5 dan suhu 50ºC. Namun demikian, berdasarkan penelitian ini, disarankan bahwa kondisi yang paling disukai untuk nitasi benzen dalam CSTR isotermal adalah 50ºC dan rasio asam sulfat:asam nitrat sekitar 2,5 sampai 3.


Download data is not yet available.


Agustriyanto, R., Sapei, L., Rosaline, G. and Setiawan, R. 2017a. The Effect of Temperature on the Production of Nitrobenzene. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing. doi: 10.1088/1757-899X/172/1/012045.

Agustriyanto, R., Sapei, L., Setiawan, R., Rosaline, G., Kimia, T. and Surabaya Jl Raya Kalirungkut, U. 2017b. PENGARUH RASIO ASAM SULFAT TERHADAP ASAM NITRAT PADA SINTESIS NITROBENZENA DALAM CSTR.

Austin, G. 1984. Shreve’s Chemical Process Industries. New York: McGraw-Hill Education.

Biggs, R.D. and White, R.R. 1956. Rate of nitration of benzene with mixed acid. AIChE Journal 2(1), pp. 26–33. Available at:

Clark, J. 2000. The Nitration of Benzene. Available at: [Accessed: 7 January 2023].

Ganjala, V.S.P., Neeli, C.K.P., Pramod, C.V., Khagga, M., Rao, K.S.R. and Burri, D.R. 2014. Eco-friendly nitration of benzenes over zeolite-β-SBA-15 composite catalyst. Catalysis Communications 49, pp. 82–86. doi: 10.1016/J.CATCOM.2014.02.006.

Gong, S., Liu, L., Cui, Q. and Ding, J. 2010. Liquid phase nitration of benzene over supported ammonium salt of 12-molybdophosphoric acid catalysts prepared by sol–gel method. Journal of Hazardous Materials 178(1–3), pp. 404–408. doi: 10.1016/J.JHAZMAT.2010.01.095.

Hoggett, J.G. 2009. Nitration and aromatic reactivity. Cambridge University Press.

Kobe, K.A. and Mills, J.J. 2002. Mononitration of Benzene. Industrial & Engineering Chemistry 45(2), pp. 287–291. Available at: [Accessed: 7 January 2023].

Koskin, A.P., Kenzhin, R. v., Vedyagin, A.A. and Mishakov, I. v. 2014. Sulfated perfluoropolymer–CNF composite as a gas-phase benzene nitration catalyst. Catalysis Communications 53, pp. 83–86. doi: 10.1016/J.CATCOM.2014.04.026.

Kulal, A.B., Dongare, M.K. and Umbarkar, S.B. 2016. Sol–gel synthesised WO3 nanoparticles supported on mesoporous silica for liquid phase nitration of aromatics. Applied Catalysis B: Environmental 182, pp. 142–152. doi: 10.1016/J.APCATB.2015.09.020.

Nitration and Aromatic Reactivity - J. G. Hoggett, R. B. Moodie, J. R. Penton, K. Schofield - Google Books. [no date]. Available at: [Accessed: 7 January 2023].

Nitrobenzene (IARC Summary & Evaluation, Volume 65, 1996). [no date]. Available at: [Accessed: 11 January 2023].

Quadros, P.A., Oliveira, N.M.C. and Baptista, C.M.S.G. 2005. Continuous adiabatic industrial benzene nitration with mixed acid at a pilot plant scale. Chemical Engineering Journal 108(1–2), pp. 1–11. doi: 10.1016/j.cej.2004.12.022.

Rafique, S. et al. 2023. AIEE active stilbene based fluorescent sensor with red-shifted emission for vapor phase detection of nitrobenzene and moisture sensing. Journal of Photochemistry and Photobiology A: Chemistry 437, p. 114459. Available at:

How to Cite
Agustriyanto, R., Sapei, L., Mochni, E. S., & Setyopratomo, P. (2023). Process Design of Benzene Nitrification. Keluwih: Jurnal Sains Dan Teknologi, 4(1), 13-20.