Isomerization of Cis-2-Butene to Trans-2-Butene in a Plug Flow Reactor: A Simulation Study Using Aspen HYSYS V14

  • Rudy Agustriyanto Jurusan Teknik Kimia, Fakultas Teknik, Universiitas Surabaya, Surabaya-Indonesia
  • Endang Srihari Mochni Jurusan Teknik Kimia, Fakultas Teknik, Universiitas Surabaya, Surabaya-Indonesia
  • Edy Purwanto Jurusan Teknik Kimia, Fakultas Teknik, Universiitas Surabaya, Surabaya-Indonesia
  • Puguh Setyopratomo Jurusan Teknik Kimia, Fakultas Teknik, Universiitas Surabaya, Surabaya-Indonesia
Abstract Views: 79 times
PDF Downloads: 5 times
Keywords: aspen HYSYS, butene, isomerization, plug flow reactor, process simulation, simulasi proses

Abstract

Abstract—This study investigates the isomerization of cis-2-butene to trans-2-butene in a single-tube Plug Flow Reactor (PFR) using Aspen HYSYS V14 for process simulation. The reaction is modeled as a homogeneous, irreversible isomerization with first-order kinetics (rate constant k=0.003833 s−1). The objective was to determine the optimal reactor volume and channel diameter to achieve 95% conversion of cis-2-butene under specified conditions: 1 meter reactor length, 100 kgmol/h feed rate, 12 bar pressure, and 25°C. The Peng-Robinson fluid package was employed for thermodynamic calculations. Simulation results indicate that a reactor volume of 2.268 m³ and channel diameter of 1.699 m are required to achieve the target conversion. This study demonstrates the efficacy of Aspen HYSYS in reactor design optimization and provides valuable insights for industrial applications of butene isomerization. The methodology presented offers a robust framework for addressing similar chemical engineering challenges.

Keywords: aspen HYSYS, butene, isomerization, plug flow reactor, process simulation.

 

Abstrak—Penelitian ini menyelidiki isomerisasi cis-2-butena menjadi trans-2-butena dalam Reaktor Aliran Sumbat (PFR) tabung tunggal dengan menggunakan Aspen HYSYS V14 untuk simulasi proses. Reaksi dimodelkan sebagai isomerisasi homogen irreversible, dengan kinetika orde pertama (konstanta kecepatan reaksi k = 0,003833 s−1). Tujuan penelitian ini adalah menentukan volume reaktor dan diameter saluran yang optimal untuk mencapai konversi cis-2-butena sebesar 95% di bawah kondisi yang telah ditentukan: panjang reaktor 1 meter, laju umpan 100 kgmol/jam, tekanan 12 bar, dan suhu 25°C. Paket fluida Peng-Robinson digunakan untuk perhitungan termodinamika. Hasil simulasi menunjukkan bahwa volume reaktor sebesar 2,268 m³ dan diameter saluran sebesar 1,699 m diperlukan untuk mencapai konversi yang ditargetkan. Penelitian ini menunjukkan efektivitas Aspen HYSYS dalam optimasi desain reaktor dan memberikan wawasan berharga untuk aplikasi industri isomerisasi butena. Metodologi yang dipresentasikan menawarkan kerangka kerja yang kuat untuk mengatasi tantangan rekayasa kimia serupa.

Kata kunci: aspen HYSYS, butena, isomerisasi, plug flow reaktor, simulasi proses

 

Downloads

Download data is not yet available.

References

Abdellatief, T.M.M., Ershov, M.A. and Kapustin, V.M. 2020. New recipes for producing a high-octane gasoline based on naphtha from natural gas condensate. Fuel 276, p. 118075. Available at: https://www.sciencedirect.com/science/article/pii/S0016236120310711.

Agustriyanto, R., Sapei, L., Mochni, E.S. and Setyopratomo, P. 2023. Process Design of Benzene Nitrification. Keluwih: Jurnal Sains dan Teknologi 4(1), pp. 13–20. doi: 10.24123/saintek.v4i1.5391.

Agustriyanto, R., Setyopratomo, P., Mochni, E.S. and Purwanto, E. 2024. Simulation of the Hydrodealkylation of Toluene Using Conversion Reactor. Keluwih: Jurnal Sains dan Teknologi 5(1), pp. 19–26. doi: 10.24123/saintek.v5i1.6351.

Ahmed, I., Abbas, S., Jamal, F.Q., Ahmad, I., Naseem, A. and Tahir, A.M. 2024. Analysis of processed natural gas injection on hydrate formation in high pressure refrigerated condensate lines. Heliyon 10(4). doi: 10.1016/j.heliyon.2024.e25811.

Arefi, M.M., Montazeri, A., Poshtan, J. and Jahed-Motlagh, M.R. 2008. Wiener-neural identification and predictive control of a more realistic plug-flow tubular reactor. Chemical Engineering Journal 138(1), pp. 274–282.

Available at: https://www.sciencedirect.com/science/article/pii/S1385894707003749.

Aspen Technology, I. 2012. Isomerization in a PFR with Aspen Plus® V8.0. Available at: https://lms.nchu.edu.tw/sysdata/doc/a/af10b6e3c89bfe0d/pdf.pdf [Accessed: 29 July 2024].

Dhar, A., Vekariya, R.L. and Bhadja, P. 2018. n-Alkane isomerization by catalysis—a method of industrial importance: An overview. Weaver, G. W. ed. Cogent Chemistry 4(1), p. 1514686. Available at: https://doi.org/10.1080/23312009.2018.1514686.

Guedes, P.H.P.S., Luz, R.F., Cavalcante, R.M. and Young, A.F. 2023. Process simulation for technical and economic evaluation of acrolein and glycerol carbonate production from glycerol. Biomass and Bioenergy 168, p. 106659.

Available at: https://www.sciencedirect.com/science/article/pii/S096195342200321X.

Hidalgo, J.M., Zbuzek, M., Černý, R. and Jíša, P. 2014. Erratum: Current uses and trends in catalytic isomerization, alkylation and etherification processes to improve gasoline quality (Central European Journal of Chemistry). Central European Journal of Chemistry 12(2), p. 281. doi: 10.2478/s11532-013-0365-6.

INCHEM. [no date][a]. cis-2 BUTENE. Available at: https://www.inchem.org/documents/icsc/icsc/eics0397.htm [Accessed: 24 July 2024].

INCHEM. [no date][b]. trans-2-BUTENE. Available at: https://inchem.org/documents/icsc/icsc/eics0398.htm [Accessed: 24 July 2024].

Junior, M.R.D.S. et al. 2022. Simulation of Organic Liquid Product Deoxygenation through Multistage Countercurrent Absorber/Stripping Using CO2 as Solvent with Aspen-HYSYS: Process Modeling and Simulation. Molecules 27(7). doi: 10.3390/molecules27072211.

Kartal, F., Sezer, S. and Özveren, U. 2022. Investigation of steam and CO2 gasification for biochar using a circulating fluidized bed gasifier model in Aspen HYSYS. Journal of CO2 Utilization 62, p. 102078. Available at: https://www.sciencedirect.com/science/article/pii/S2212982022001974.

Maulana, E.I., Tarikh, A. and Widaranti, R.D. 2024. Minimizing Energy Usage in the Production of Benzene through Hydrodealkylation Toluene Process by Optimizing Heat Transfer Unit in Reactor System. Journal of Chemical Engineering Research Progress 1(2), pp. 97–107. Available at: https://journal.bcrec.id/index.php/jcerp/article/view/20167.

Naqvi, S.R., Bibi, A., Naqvi, M., Noor, T., Nizami, A.-S., Rehan, M. and Ayoub, M. 2018. New trends in improving gasoline quality and octane through naphtha isomerization: a short review. Applied Petrochemical Research 8(3), pp. 131–139. doi: 10.1007/s13203-018-0204-y.

Olugbenga, A.G. 2024. Dependence of operational properties on reboiler duty in the removal of CO2 from natural gas with aspen Hysys. Results in Engineering 21. doi: 10.1016/j.rineng.2024.101755.

PubChem. [no date][a]. cis-2-Butene. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/cis-2-Butene [Accessed: 24 July 2024].

PubChem. [no date][b]. trans-2-Butene-d1. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/trans-2-Butene-d1 [Accessed: 24 July 2024].

Qiu, S. et al. 2023. Regulating isomerization of gasoline-alkanes in aqueous-phase hydrodeoxygenation of sorbitol using regenerable Ni@MoOx catalysts. Fuel Processing Technology 242, p. 107647. Available at: https://www.sciencedirect.com/science/article/pii/S0378382022004878.

Riaz, A., Qyyum, M.A., Hussain, A. and Lee, M. 2023. Tapping the energy and exergy benefits of channeling liquid air energy system in the hydrogen liquefaction process. Journal of Energy Storage 72, p. 108193. Available at: https://www.sciencedirect.com/science/article/pii/S2352152X23015906.

Satterfield, C.N. 1991. Heterogeneous catalysis in industrial practice. 2nd edition. United States: New York, NY (United States); McGraw Hill Book Co. Available at: https://www.osti.gov/biblio/5495428.

Tuluc, A., Valentin, P. and Bozga, G. 2015. Biodiesel plant optimisation study by using aspen-HYSYS® process simulator. Available at: https://www.researchgate.net/publication/282377702.

Valverde, J.L., Ferro, V.R. and Giroir-Fendler, A. 2023. Automation in the simulation of processes with Aspen HYSYS: An academic approach. Computer Applications in Engineering Education 31(2), pp. 376–388. Available at: https://doi.org/10.1002/cae.22589.

Wasalathilake KC, W.U. 2014. Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor. Journal of Chemical Engineering & Process Technology 5(6). doi: 10.4172/2157-7048.1000205.

Yandrapu, V.P. and Kanidarapu, N.R. 2022. Energy, economic, environment assessment and process safety of methylchloride plant using Aspen HYSYS simulation model. Digital Chemical Engineering 3, p. 100019. Available at: https://www.sciencedirect.com/science/article/pii/S2772508122000102.

Published
2024-11-11
How to Cite
Rudy Agustriyanto, Endang Srihari Mochni, Edy Purwanto, & Puguh Setyopratomo. (2024). Isomerization of Cis-2-Butene to Trans-2-Butene in a Plug Flow Reactor: A Simulation Study Using Aspen HYSYS V14 . Keluwih: Jurnal Sains Dan Teknologi, 5(2). https://doi.org/10.24123/saintek.v5i2.6715