Kontroversi Metode Deteksi COVID-19 di Indonesia

  • Mariana Wahjudi Prodi Biologi dan Magister Bioteknologi, Fakultas Teknobiologi, Universitas Surabaya, Surabaya-Indonesia

Abstract

Abstract—The governance of COVID-19 cases in Indonesia is carried out in accordance with the WHO directions. Serological tests, often mentioned as rapid antibody tests, are used for mass screening testing while the polymerase-chain-reaction (PCR)-based tests are performed for routine confirmation of COVID-19 infection cases. PCR test is one of nucleic acid amplification tests (NAAT) for detection of viral RNA. The management of the COVID-19 detection caused controversies at the beginning of pandemic period. It seems that the controversies occurred due to misperception regarding the tests, as well as misunderstanding caused by differences in individual immune responses, viral dynamics in human bodies and clinical outcomes. In response to community opinion controversies, this paper discuss the following topics, i.e. a glimpse about COVID-19, the characteristics of SARS-CoV-2, viral dynamics in human body, the dynamics of human immune response to SARS-CoV-2, basic explanation about COVID-19 and SARS-CoV-2 testing, and the last part explained the occurred controversies.
Keywords: Indonesia, polymerase chain reaction, rapid test, SARS-CoV-2, serology


Abstrak— Penetapan pelaksanaan deteksi kasus COVID-19 di Indonesia dilaksanakan sesuai arahan WHO. Uji serologis atau rapid test antibodi digunakan untuk test atau skrining massal sedangkan untuk uji berbasis polymerase-chain-reaction (PCR) digunakan untuk konfirmasi rutin kasus infeksi COVID-19. Uji molekuler secara PCR merupakan salah satu metode nucleic acid amplification tests (NAAT), untuk mendeteksi RNA virus. Penatalaksanaan deteksi Coronavirus disease 2019 (COVID-19) ini di awal masa pandemik menimbulkan berbagai kontroversi di masyarakat. Kontroversi terjadi terutama karena pemahaman yang berbeda dari masyarakat mengenai prinsip pengujian dan adanya salah pengertian akibat adanya perbedaan respon immun antar individu, dinamika virus COVID-19 dalam tubuh orang terinfeksi, dan luaran klinis pasien. Menanggapi kontroversi pendapat di masyarakat maka pada tulisan ini dibahas tentang sekilas COVID-19, karakteristik SARS-CoV-2, dinamika virus dan pembentukan antibodi dalam tubuh manusia, penjelasan prinsip pengujian COVID-19 dan SAR-CoV-2 serta ulasan tentang kontroversi yang terjadi.
Kata kunci: Indonesia, polymerase chain reaction, rapid test, SARS-CoV-2, serology

Downloads

Download data is not yet available.

References

  1. Ihsanuddin. Fakta Lengkap Kasus Pertama Virus Corona di Indonesia. Kompas.com [Internet]. 2020 Mar 3; Available from: https://nasional.kompas.com/read/2020/03/03/06314981/fakta-lengkap-kasus-pertama-virus-corona-di-indonesia?page=all.

  2. Prabowo D. Rapid Test di Indonesia Berdasarkan Tracing, Beda dengan Korea Selatan. Kompas.com [Internet]. 2020 Apr 3; Available from: https://nasional.kompas.com/read/2020/04/03/12535711/rapid-test-di-indonesia-berdasarkan-tracing-beda-dengan-korea-selatan

  3. Aji P B. Kronologi Penjemputan Paksa Positif Covid-19 di Tasikmalaya. Republika [Internet]. 2020 May 15; Available from: https://republika.co.id/berita/qadn02327/kronologi-penjemputan-paksa-positif-covid19-di-tasikmalaya

  4. Kurnia D. Ini Kronologi Jenazah Covid-19 Dibawa Paksa Keluarga. Republika [Internet]. 2020 Jun 10; Available from: https://republika.co.id/berita/qbp0au335/ini-kronologi-jenazah-covid-19-dibawa-paksa-keluarga

  5. Saubani A. Polda Sulsel Tetapkan 10 Tersangka Penjemput Paksa Jenazah. Republika [Internet]. 2020 Jun 10; Available from: https://republika.co.id/berita/qbpkcg409/polda-sulsel-tetapkan-10-tersangka-penjemput-paksa-jenazah

  6. Sukri and Andiz. Menteri Kesehatan: Rapid Test Jangan Digunakan Lagi untuk Deteksi Corona. Pantau 24 jam [Internet]. 2020; Available from: https://pantau24jam.com/2020/07/15/menteri-kesehatan-rapid-test-jangan-digunakan-lagi-untuk-deteksi-corona/

  7. WHO. Novel Coronavirus (2019-nCoV) SITUATION REPORT - 1 21 JANUARY 2020 [Internet]. Geneva; 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4

  8. WHO. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020 [Internet]. Geneva; 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

  9. WHO. Coronavirus disease (COVID-19): Situation Report – 193 [Internet]. Geneva; 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200731-covid-19-sitrep-193.pdf?sfvrsn=42a0221d_4

  10. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet [Internet]. 2020;395(10223):507–13. Available from: http://dx.doi.org/10.1016/S0140-6736(20)30211-7

  11. Young BE, Ong SX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA - J Am Med Assoc [Internet]. 2020;323(15):1488–94. Available from: https://scholar.google.com/scholar_url?url=https://jamanetwork.com/journals/jama/articlepdf/2762688/jama_young_2020_oi_200030.pdf&hl=en&sa=T&oi=ucasa&ct=ufr&ei=ARw6X8OQO82iygTWw4SACw&scisig=AAGBfm3p5nsiRFrrWDR-SJRAtO8SysRQww

  12. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–36.

  13. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.

  14. Carlos GW, Cruz CS Dela, Cao B, Pasnick S, Jamil S. Novel Wuhan (2019-NCoV) coronavirus. Am J Respir Crit Care Med. 2020;201(4):P7–8.

  15. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - J Am Med Assoc. 2020;323(11):1061–9.

  16. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.

  17. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet [Internet]. 2020;395(10224):565–74. Available from: http://dx.doi.org/10.1016/S0140-6736(20)30251-8

  18. Phan L, Nguyen T V, Luong Q, Nguyen T V, Nguyen HT, Le HQ, et al. Importation and Human-to-human Transmission of a Novel Coronavirus in Vietman. N Engl J Med [Internet]. 2020;February(Coorespondance):2008–9. Available from: https://www.nejm.org/doi/pdf/10.1056/NEJMc2001272

  19. Wu P, Hao X, Lau EHY, Wong JY, Leung KSM, Wu JT, et al. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Eurosurveillance. 2020;25(3):1–6.

  20. Yi Y, Lagniton PNP, Ye S, Li E, Xu RH. COVID-19: What has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753–66.

  21. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndromerelated coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol [Internet]. 2020;5:536–44. Available from: https://doi.org/10.1038/s41564-020-0695-z

  22. Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; coronavirus disease-19). Pediatr Infect Vaccine. 2020;27(1):1–10.

  23. Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2020;(xxxx):0–4.

  24. Siddiqi HK, Mehra MR. COVID-19 Illness in Native and Immunosuppressed States: A Clinical-Therapeutic Staging Proposal. J Hear Lung Transplant. 2020;39(5):405–7.

  25. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8.

  26. Liu YL, Yan L-M, Wan L, Xiang T-X, Le A, Liu J-M, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis [Internet]. 2020;3099(20):30232–2. Available from: https://doi.org/10.1016/S1473-3099(20)30232-2

  27. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207.

  28. Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung S, et al. Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. J Clin Med. 2020;9(2):538.

  29. Weissleder R, Lee H, Ko J, Pittet MJ. COVID-19 diagnostics in context. Sci Transl Med. 2020;12(546):1–7.
  30. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The incubation period of coronavirus disease 2019 (CoVID-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med. 2020;172(9):577–82.

  31. Kucharski AJ, Eggo RM. Invisible spread of SARS-CoV-2 – Authors’ reply. Lancet Infect Dis [Internet]. 2020;3099(20):30275. Available from: http://dx.doi.org/10.1016/S1473-3099(20)30275-9

  32. BAR-ON YM, FLAMHOLZ A, PHILLIPS, AND MILO R. SARS-CoV-2 (COVID-19) by the numbers. eLife 2020 [Internet]. 2020;9(e57309):15. Available from: doi: https://doi.org/10.7554/eLife.57309

  33. Lin M, Tseng HK, Trejaut JA, Lee HL, Loo JH, Chu CC, et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet. 2003;4(May 2014).

  34. Liu X, Wang J, Xu X, Liao G, Chen Y, Hu CH. Patterns of IgG and IgM antibody response in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):1269–74.

  35. Lippi G, Simundic AM, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med. 2020;58(7):1070–6.

  36. Fda. Coronavirus Testing Basics. 2020;2019(July):2019–21. Available from: www.fda.gov

  37. WHO. Laboratory testing strategy recommendations for COVID-19: interim guidance, 22 March 2020 [Internet]. 2020. Available from: https://apps.who.int/iris/handle/10665/331509

  38. WHO. Laboratory testing for coronavirus disease (COVID-19) in suspected human cases: interim guidance 19 March 2020 [Internet]. 2020. Available from: https://apps.who.int/iris/bitstream/handle/10665/331501/WHO-COVID-19-laboratory-2020.5-eng.pdf?sequence=1&isAllowed=y

  39. Thevarajan I, Nguyen OHT, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med [Internet]. 2020;26:455–455. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7095036/

  40. van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet Evol [Internet]. 2020;83(May):104351. Available from: https://doi.org/10.1016/j.meegid.2020.104351

  41. Lau SKP, Woo PCY, Wong BHL, Tsoi HW, Woo GKS, Poon RWS, et al. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in SARS patients by enzyme-linked immunosorbent assay. J Clin Microbiol. 2004;42(7):2884–9.

Published
2020-12-21
How to Cite
WAHJUDI, Mariana. Kontroversi Metode Deteksi COVID-19 di Indonesia. KELUWIH: Jurnal Kesehatan dan Kedokteran, [S.l.], v. 2, n. 1, p. 32-42, dec. 2020. ISSN 2715-6419. Available at: <http://journal.ubaya.ac.id/index.php/kesdok/article/view/2994>. Date accessed: 01 mar. 2021. doi: https://doi.org/10.24123/kesdok.V2i1.2994.