Efektivitas Adaptasi Teknologi pada Kinerja Sistem Surveilans Malaria di Era COVID-19 untuk Negara Berkembang: Sebuah Kajian Sistematis

  • Valerie Josephine Dirjayanto Program Studi Pendidikan Dokter, Fakultas Kedokteran, Universitas Indonesia, Depok-Indonesia
  • Celina Azhura Harmen Program Studi Pendidikan Dokter, Fakultas Kedokteran, Universitas Indonesia, Depok-Indonesia
  • Muhammad Athallah Arsyaf Program Studi Pendidikan Dokter, Fakultas Kedokteran, Universitas Indonesia, Depok-Indonesia
Abstract Views: 192 PDF Downloads: 45
Keywords: malaria, surveillance, mobile health, low resource countries, covid-19, negara sumber daya rendah


Abstract—Due to the limitations of the current malaria surveillance system, the use of technology for diagnostics and treatment is an important factor in controlling the number of malaria cases at local and national levels. However, studies on the effectiveness of the implementation of technology-assisted surveillance systems have yet to be found. The literature search was conducted based on the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA). This systematic review was conducted using PubMed, Scopus, ScienceDirect, Cochrane, Google Scholar, and EBSCOHost databases. Assessment of study bias and methodology was carried out with the National Institutes of Health (NIH) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. The literature search yielded 9 literatures with a total subject of 322,168. The usage of technology in malaria surveillance system has been shown to shorten the time of discovery, reporting, case follow-up response. The interventions also improve the completeness and accuracy of the data and improve user-supervisor coordination while also receiving  positive responses from the users. This study demonstrates the effectiveness of implementing a technology-based malaria surveillance system in developing countries in the COVID-19 era. Further research with larger and uniform population is needed to strengthen the evidence for successful implementations.

Keyword: malaria, surveillance, mobile health, low resource countries, covid-19

Abstrak—Mengingat keterbatasan sistem surveilans malaria yang ada saat ini, penggunaan teknologi dalam melakukan pelaporan diagnostik maupun pengobatan kasus merupakan faktor penting dalam menentukan pengendalian jumlah kasus malaria pada tingkat lokal dan nasional. Namun, kajian mengenai efektivitas penggunaanya masih belum dapat ditemukan. Pencarian literatur studi dilakukan berdasarkan the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA). Kajian sistematis ini dilakukan melalui database dan. Penilaian bias dan metodologi studi dilakukan dengan National Institutes of Health (NIH) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Pencarian literatur menghasilkan 9 literatur dengan total subjek 322.168 orang. Penggunaan teknologi dalam sistem surveilans malaria terbukti mempersingkat waktu penemuan, waktu pelaporan, hingga waktu respon follow-up kasus. Selain meningkatkan kelengkapan dan keakuratan data, teknologi tersebut juga membantu koordinasi pengguna dengan supervisor dan mendapatkan respon positif dari pengguna. Kajian sistematik ini menunjukkan efektivitas penerapan sistem surveilans malaria berbasis teknologi pada negara berkembang di era COVID-19. Penelitian lanjut dengan populasi yang besar dan seragam dibutuhkan untuk memperkuat bukti kesuksesan penerapan.

Kata Kunci: malaria, surveilans, mobile health, negara sumber daya rendah, covid-19


Download data is not yet available.


World Health Organization. World malaria report 2021 [Internet]. Geneva: World Health Organization; 2021 [cited 2022 Jan 25]. Available from: https://apps.who.int/iris/handle/10665/350147

Elyazar IRF, Hay SI, Baird JK. Malaria Distribution, Prevalence, Drug Resistance and Control in Indonesia. Adv Parasitol. 2011;74:41–175.

Liu Q, Jing W, Kang L, Liu J, Liu M. Trends of the global, regional and national incidence of malaria in 204 countries from 1990 to 2019 and implications for malaria prevention. J Travel Med. 2021 Mar 24;28(5):taab046.

World Health Organization. World malaria report 2020: 20 years of global progress and challenges [Internet]. Geneva: World Health Organization; 2020 [cited 2022 Jan 25]. 247 p. Available from: https://apps.who.int/iris/handle/10665/337660

Zawawi A, Alghanmi M, Alsaady I, Gattan H, Zakai H, Couper K. The impact of COVID-19 pandemic on malaria elimination. Parasite Epidemiol Control. 2020 Oct 20;11:e00187.

Hussein MIH, Albashir AAD, Elawad OAMA, Homeida A. Malaria and COVID-19: unmasking their ties. Malaria Journal. 2020 Desember;19(1):457.

World Health Organization. Global technical strategy for malaria 2016–2030 [Internet]. 2021 update. Geneva: World Health Organization; 2021 [cited 2022 Jan 25]. Available from: https://apps.who.int/iris/handle/10665/342995

Bridges DJ, Winters AM, Hamer DH. Malaria elimination: surveillance and response. Pathog Glob Health. 2012 Aug;106(4):224–31.

Lourenço C, Tatem AJ, Atkinson PM, Cohen JM, Pindolia D, Bhavnani D, et al. Strengthening surveillance systems for malaria elimination: a global landscaping of system performance, 2015–2017. Malaria Journal. 2019 Sep 18;18(1):315.

World Health Organization. Disease surveillance for malaria control : an operational manual. Surveillance épidémiologique aux fins de la lutte antipaludique : manuel opérationnel [Internet]. 2012 [cited 2022 Jan 25]; Available from: https://apps.who.int/iris/handle/10665/44851

Di Gennaro F, Marotta C, Locantore P, Pizzol D, Putoto G. Malaria and COVID-19: Common and Different Findings. Tropical Medicine and Infectious Disease. 2020 Sep;5(3):141.

Taylor S, Landry CA, Rachor GS, Paluszek MM, Asmundson GJG. Fear and avoidance of healthcare workers: An important, under-recognized form of stigmatization during the COVID-19 pandemic. Journal of Anxiety Disorders. 2020 Oct;75:102289.

Ajayi IO, Ajumobi OO, Falade C. Malaria and COVID-19: commonalities, intersections and implications for sustaining malaria control. Pan Afr Med J. 2020;37(Suppl 1):1.

Chuma J, Okungu V, Molyneux C. Barriers to prompt and effective malaria treatment among the poorest population in Kenya. Malaria Journal. 2010 Mei;9(1):144.

World Health Organization. Malaria surveillance, monitoring and evaluation: a reference manual [Internet]. Geneva: World Health Organization; 2018 [cited 2022 Jan 25]. Available from: https://apps.who.int/iris/handle/10665/272284

World Health Organization. What will the future look like for malaria surveillance, diagnosis and treatment? [cited 2022 Jan 26]; Available from: https://www.who.int/indonesia/news/detail/26-04-2021-what-will-the-future-look-like-for-malaria-surveillance-diagnosis-and-treatment

Hamainza B, Killeen GF, Kamuliwo M, Bennett A, Yukich JO. Comparison of a mobile phone-based malaria reporting system with source participant register data for capturing spatial and temporal trends in epidemiological indicators of malaria transmission collected by community health workers in rural Zambia. Malar J. 2014 Dec 12;13:489.

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ [Internet]. 2009 Jul 21 [cited 2021 Aug 25];339:b2535. Available from: https://www.bmj.com/content/339/bmj.b2535

Ma L-L, Wang Y-Y, Yang Z-H, Huang D, Weng H, Zeng X-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Military Medical Research [Internet]. 2020 Feb 29 [cited 2022 Jan 12];7(1):7. Available from: https://doi.org/10.1186/s40779-020-00238-8

Quan V, Hulth A, Kok G, Blumberg L. Timelier notification and action with mobile phones-towards malaria elimination in South Africa. Malar J [Internet]. 2014 Apr 21 [cited 2022 Jan 12];13(1):1–8. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-13-151

Baloyi RE, Shandukani MB, Graffy R, Misiani E, Mayet N, Mabunda E, et al. Evaluating a 24-h mobile reporting system for malaria notifications in comparison with a paper-based system in South Africa, 2015. Malaria Journal. 2018 Agustus;17(1):308.

Davies C, Graffy R, Shandukani M, Baloyi E, Gast L, Kok G, et al. Effectiveness of 24-h mobile reporting tool during a malaria outbreak in Mpumalanga Province, South Africa. Malaria Journal. 2019 Feb 21;18(1):45.

Baliga BS, Baliga S, Jain A, Kulal N, Kumar M, Koduvattat N, et al. Digitized smart surveillance and micromanagement using information technology for malaria elimination in Mangaluru, India: an analysis of five-year post-digitization data. Malaria Journal. 2021 Mar 8;20(1):139.

Oo W, Win H, Cutts JC, Kyawt MW, Kaung MT, Oo MC, et al. A mobile phone application for malaria case-based reporting to advance malaria surveillance in Myanmar: a mixed methods evaluation. Malar J. 2021 Dec;20(1):167.

Githinji S, Kigen S, Memusi D, Nyandigisi A, Wamari A, Muturi A, et al. Using mobile phone text messaging for malaria surveillance in rural Kenya. Malar J. 2014 Mar 19;13:107

Moore C, Scherr T, Matoba J, Sing’anga C, Lubinda M, Thuma P, et al. mHAT app for automated malaria rapid test result analysis and aggregation: a pilot study. Malar J. 2021 Dec;20(1):237.

Scaling up diagnostic testing, treatment and surveillance for malaria. 2012 [cited 2022 Jan 28]; Available from: www.who.int

Department of Health Republic of South Africa. Surveillance guidelines for malaria elimination and prevention of reintroduction for south africa[Internet]. South Africa: Department of Health Republic of South Africa;2012[cited 2022 Jan 28]. Available from: https://www.nicd.ac.za/assets/files/Surveillance%20Guidelines%20for%20Malaria%20Elimination%20and%20Prevention%20of%20Reintroduction%20for%20South%20Africa%20(2012).pdf

Zhou S Sen, Zhang S Sen, Zhang L, Rietveld AEC, Ramsay AR, Zachariah R, et al. China’s 1-3-7 surveillance and response strategy for malaria elimination: Is case reporting, investigation and foci response happening according to plan? Infect Dis Poverty [Internet]. 2015 Dec 10 [cited 2022 Jan 28];4(1):1–9. Available from: https://idpjournal.biomedcentral.com/articles/10.1186/s40249-015-0089-2

Moynihan R, Sanders S, Michaleff ZA, Scott AM, Clark J, To EJ, et al. Impact of COVID-19 pandemic on utilisation of healthcare services: a systematic review. BMJ Open [Internet]. 2021 Mar 1 [cited 2022 Jan 28];11(3):e045343. Available from: https://bmjopen.bmj.com/content/11/3/e045343

Tobgay T, Samdrup P, Jamtsho T, Mannion K, Ortega L, Khamsiriwatchara A, et al. Performance and user acceptance of the Bhutan febrile and malaria information system: report from a pilot study. Malar J. 2016 Dec;15(1):52.

Crutcher JM, Hoffman SL. Malaria. S B, editor. Med Microbiol [Internet]. 1996 [cited 2022 Jan 28]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK8584/

Wilairatana P, Masangkay FR, Kotepui KU, Milanez GDJ, Kotepui M. Prevalence and characteristics of malaria among COVID-19 individuals: A systematic review, meta-analysis, and analysis of case reports. PLoS Negl Trop Dis [Internet]. 2021 Oct 1 [cited 2022 Jan 28];15(10):e0009766. Available from: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0009766

World Health Organization. Management of severe malaria – A practical handbook[Internet]. 3rd edition. Geneva: World Health Organization; 2012 [cited 2022 Jan 28]. Available from: https://apps.who.int/iris/bitstream/handle/10665/79317/9789241548526_eng.pdf

Lubell Y, Staedke SG, Greenwood BM, Kamya MR, Molyneux M, Newton PN, et al. Likely health outcomes for untreated acute febrile illness in the tropics in decision and economic models; a Delphi survey. PLoS One. 2011;6(2).

World Health Organization. Guidelines for the Treatment of Malaria[Internet]. Geneva: World Health Organization; 2015[cited 2022 Jan 28]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK294441/

United Nations. COVID contributed to 69,000 malaria deaths WHO finds, though ‘doomsday scenario’ averted [Internet]. New York: United Nations[cited 2022 Jan 28]. Available from: https://news.un.org/en/story/2021/12/1107162

Njeru I, Kareko D, Kisangau N, Langat D, Liku N, Owiso G, et al. Use of technology for public health surveillance reporting: opportunities, challenges and lessons learnt from Kenya. BMC Public Health. 2020 Jul 13;20(1):1101.

Nsoesie EO, Kluberg SA, Mekaru SR, Majumder MS, Khan K, Hay SI, et al. New digital technologies for the surveillance of infectious diseases at mass gathering events. Clinical Microbiology and Infection. 2015 Feb 1;21(2):134–40.

Feroz A, Jabeen R, Saleem S. Using mobile phones to improve community health workers performance in low-and-middle-income countries. BMC Public Health. 2020 Jan 13;20(1):49..

Zeleke AA, Worku AG, Demissie A, Otto-Sobotka F, Wilken M, Lipprandt M, et al. Evaluation of Electronic and Paper-Pen Data Capturing Tools for Data Quality in a Public Health Survey in a Health and Demographic Surveillance Site, Ethiopia: Randomized Controlled Crossover Health Care Information Technology Evaluation. JMIR Mhealth Uhealth. 2019 Feb 11;7(2):e10995.

Cabatuan M, Manguerra M. Machine learning for disease surveillance or outbreak monitoring: A review. In: 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). 2020. p. 1–6.

Pley C, Evans M, Lowe R, Montgomery H, Yacoub S. Digital and technological innovation in vector-borne disease surveillance to predict, detect, and control climate-driven outbreaks. The Lancet Planetary Health. 2021 Oct 1;5(10):e739–45.

Safi S, Thiessen T, Schmailzl KJ. Acceptance and Resistance of New Digital Technologies in Medicine: Qualitative Study. JMIR Res Protoc. 2018 Dec 4;7(12):e11072.

How to Cite
Dirjayanto, V. J., Harmen, C. A., & Arsyaf, M. A. (2022). Efektivitas Adaptasi Teknologi pada Kinerja Sistem Surveilans Malaria di Era COVID-19 untuk Negara Berkembang: Sebuah Kajian Sistematis. Keluwih: Jurnal Kesehatan Dan Kedokteran, 3(2), 108-125. https://doi.org/10.24123/kesdok.V3i2.5009