Optimasi Laju Alir Pengeringan Semprot Mikropartikel Asiklovir dengan Kitosan dan Natrium Tripolifosfat

  • Cynthia Marisca Muntu Fakultas Farmasi, Universitas Surabaya, Surabaya - Indonesia
  • Jessica Clarissa Selan Fakultas Farmasi, Universitas Surabaya, Surabaya - Indonesia
  • Sadono Fakultas Farmasi, Universitas Surabaya, Surabaya - Indonesia
Abstract Views: 0 times
Keywords: acyclovir, chitosan, flow rate, microparticles, spray-drying

Abstract

AbstractThe solubility and bioavailability limitations of acyclovir can be addressed through the microparticles formulation using the spray drying (SD) method. In this study, chitosan and sodium tripolyphosphate were utilized as cross-linking agents in acyclovir microparticles (MA). This study aims to investigate the influence of SD flow rates on MA formation. The SD flow rates were set at 7.5 (L1), 6.5 (L2), and 5.5 (L3) mL/min. Functional group identification confirmed cross-linking in all MA samples. Melting point and thermal energy parameters analysis revealed differences in endothermic values between chitosan and all samples. The particle diameters of MA in L1, L2, and L3 were 8.03, 8.78, and 8.57 µm, respectively. All MA samples exhibited a roughly spherical shape. The encapsulation efficiency of L1, L2, and L3 ranged from 118.25% to 122.79%. The swelling percentage after 30 minutes reached 178.67%. The lowest moisture content of MA was observed in the L2 sample at 3.27%. The highest yield recovery was obtained in the L2 sample at 47.26%. The dissolution profiles of all samples demonstrated controlled release profile. The SD flow rate influenced encapsulation efficiency, swelling, moisture content, drug release, and yield recovery. The best characteristics of MA were achieved at a flow rate of 6.5 mL/min.

Keywords: acyclovir, chitosan, flow rate, microparticles, spray-drying

 

Abstrak—Keterbatasan kelarutan dan bioavailabilitas asiklovir dapat diatasi dengan pembentukan mikropartikel menggunakan metode pengeringan semprot (SD). Pada penelitian ini kitosan dan natrium tripolifosfat digunakan sebagai penyambung silang dalam mikropartikel asiklovir (MA). Ekplorasi laju alir SD diperlukan untuk mengoptimalkan karakteristik MA. Penelitian ini bertujuan untuk mengeksplorasi pengaruh laju alir SD dalam pembentukan MA. Laju alir SD diatur pada variasi 7,5 mL/menit (L1), 6,5 mL/menit (L2), dan 5,5 mL/menit (L3). Identifikasi gugus fungsi membuktikan terjadinya sambung silang pada seluruh sampel MA. Analisa kualitatif berupa parameter titik lebur dan energi termal menunjukkan perbedaan nilai endotherm antara kitosan dengan sampel L1, L2, dam L3. Diameter partikel MA pada sampel L1, L2, dan L3 berturut-turut adalah 8,03 µm, 8,78 µm, dan 8,57 µm. Bentuk partikel ketiga sampel MA adalah sferis dengan morfologi permukaan kasar. Efisiensi enkapsulasi L1, L2, dan L3 berkisar 118,25 % sampai 122,79 %. Prosentase swelling setelah 30 menit mencapai 178,67 %. Kandungan lembap MA terendah diperoleh sampel L2 yaitu 3,27%. Perolehan kembali rendemen tertinggi sampel L2 sebanyak 47,26 %. Profil disolusi ketiga sampel menunjukkan pelepasan bertahap. Laju alir SD mempengaruhi efisiensi enkapsulasi, swelling, kandungan lembap, pelepasan obat dan perolehan kembali. Karakteristik MA terbaik pada laju alir 6,5 mL/menit.

Kata kunci: asiklovir, kitosan, laju alir, mikropartikel, pengeringan semprot

Downloads

Download data is not yet available.

References

Pott JH, Bocchi de Oliveira MF, Gambero S, Amazonas RB. Randomized clinical trial of famciclovir or acyclovir for the treatment of herpes zoster in adults. International Journal of Infectious Diseases. 2018;72:11-5. doi:10.1016/j.ijid.2018.04.4324.

Turner RB, Cumpston A, Sweet M, Briggs F, Slain D, Wen S, Craig M, Hamadani M, Petros W. Prospective, controlled study of acyclovir pharmacokinetics in obese patients. Antimicrobial Agents and Chemotherapy. 2016;60(3):xx-xx. doi:10.1128/aac.02010-15.

Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical Sciences. 2014;9(6):304-16. doi:10.1016/j.ajps.2014.05.005.

Nart V, França MT, Anzilaggo D, Riekes MK, Kratz JM, de Campos CEM, Simões CMO, Stulzer HK. Ball-milled solid dispersions of BCS Class IV drugs: Impact on the dissolution rate and intestinal permeability of acyclovir. Materials Science and Engineering: C. 2015;53:229-38. doi:10.1016/j.msec.2015.04.028.

Sharma V, Sharma S, Khokra SL, Sahu RK, Jangde R, Singh J. Formulation, development and evaluation of pregabalin sustained release matrix tablets. International Journal of Pharmaceutical and Applied Sciences, Der Pharmacia Lettre. 2011;3(5):326-31.

Wiggers HJ, Chevallier P, Copes F, Simch FH, da Silva Veloso F, Genevro GM, Mantovani D. Quercetin-Crosslinked Chitosan Films for Controlled Release of Antimicrobial Drugs. Frontiers in Bioengineering and Biotechnology. 2022;10:814162. doi:10.3389/fbioe.2022.814162.

Muntu CM, Sadono, Suwito MN. Pengembangan Mikrosfer Asiklovir menggunakan Kitosan dan Natrium Tripolifosfat: Faktor Suhu Inlet. Keluwih: Jurnal Kesehatan dan Kedokteran. 2022;4(1):1-10.https://doi.org/10.24123/kesdok.V4i1.5451

Babakhani A, Sartaj M. Synthesis, characterization, and performance evaluation of ion-imprinted crosslinked chitosan (with sodium tripolyphosphate) for cadmium biosorption. Journal of Environmental Chemical Engineering. 2022;10(2):107147. doi:10.1016/j.jece.2022.107147.

Zhang ZL, Li LJ, Sun D, Wang M, Shi JR, Yang D, Wang LH, Zou SC. Preparation and properties of chitosan-based microspheres by spray drying. Food Science and Nutrition. 2020;8(4):1933-41. doi:10.1002/fsn3.1479.

Katsarov PD, Pilicheva BA, Manev HM, Lukova PK, Kassarova MI. Optimization of chitosan microspheres spray drying via 3² full factorial design. Folia Medica. 2017;59(3):310-7. doi:10.1515/folmed-2017-0037.

Kamali ND, Alishahi A, Heidarieh M, Rajabifar S, Mirsadeghi H, Kordjazi M. Effect of pH variation on cross-linking of water-soluble and acid-soluble chitosan with sodium tripolyphosphate and gallium-67. Current Radiopharmaceuticals. 2022;15(3):249-55. doi:10.2174/1874471015666211220094433.

Vaziri AS, Alemzadeh I, Vossoughi M. Improving survivability of Lactobacillus plantarum in alginate-chitosan beads reinforced by Na-tripolyphosphate dual cross-linking. LWT. 2018;97:440-7. doi:10.1016/j.lwt.2018.07.037.

Aranaz I, Paños I, Peniche C, Heras Á, Acosta N. Chitosan spray-dried microparticles for controlled delivery of venlafaxine hydrochloride. Molecules. 2017;22(11):1980. doi:10.3390/molecules22111980.

França D, Medina ÁF, Messa LL, Souza CF, Faez R. Chitosan spray-dried microcapsule and microsphere as fertilizer host for swellable−controlled release materials. Carbohydrate Polymers. 2018;196:47-55. doi:10.1016/j.carbpol.2018.05.014.

Fang S, Zhao X, Liu Y, Liang X, Yang Y. Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocolloids. 2019;93:102-10. doi:10.1016/j.foodhyd.2019.02.024.

Muntu CM, Tenderan IP. Pengaruh laju alir pada proses spray drying terhadap karakteristik fisiko-kimia mikrosfer glibenklamid menggunakan polimer kitosan dan penyambung silang natrium tripolifosfat. Media Pharmaceutica Indonesiana. 2022;4(1):13-22.

Roy H, Nayak BS. Formulation and design of microparticles-based drug delivery system of selective anti-retroviral drug by chitosan. Scholars Academic Journal of Pharmacy. 2017;6(1):34-9.

Antoniraj MG, Leena MM, Moses JA, Anandharamakrishnan C. Cross-linked chitosan microparticles preparation by modified three-fluid nozzle spray drying approach. International Journal of Biological Macromolecules. 2020;147:1268-77. doi:10.1016/j.ijbiomac.2019.09.254.

Kašpar O, Jakubec M, Štěpánek F. Characterization of spray dried chitosan–TPP microparticles formed by two- and three-fluid nozzles. Powder Technology. 2013;240:31-40. doi:10.1016/j.powtec.2012.07.010.

Wei Y, Huang YH, Cheng KC, et al. Investigations of the influences of processing conditions on the properties of spray dried chitosan-tripolyphosphate particles loaded with theophylline. Scientific Reports. 2020;10:1155. doi:10.1038/s41598-020-58184-3.

Zhou J, Chen Y, Luo M, Deng F, Lin S, Wu W, Nan K. Dual cross-linked chitosan microspheres formulated with spray-drying technique for the sustained release of levofloxacin. Drug Development and Industrial Pharmacy. 2019;45(4):568-76. doi:10.1080/03639045.2019.1569025.

Helbling IM, Busatto CA, Fioramonti SA, Pesoa JI, Santiago L, Estenoz DA, Luna JA. Preparation of TPP-crosslinked chitosan microparticles by spray drying for the controlled delivery of progesterone intended for estrus synchronization in cattle. Pharmaceutical Research. 2018;35:66. doi:10.1007/s11095-018-2363-z.

Rodriguez LB, Avalos A, Chiaia N, Nadarajah A. Effect of formulation and process parameters on chitosan microparticles prepared by an emulsion crosslinking technique. AAPS PharmSciTech. 2017;18:1084-94. doi:10.1208/s12249-016-0677-x.

Correa RF, Colucci G, Halla N, Pinto JA, Santamaria-Echart A, Blanco SP, Fernandes IP, Barreiro MF. Development of chitosan microspheres through a green dual crosslinking strategy based on tripolyphosphate and vanillin. Molecules. 2021;26(8):2325. doi:10.3390/molecules26082325.

Kozlowska J, Prus W, Stachowiak N. Microparticles based on natural and synthetic polymers for cosmetic applications. International Journal of Biological Macromolecules. 2019;129:952-6. doi:10.1016/j.ijbiomac.2019.02.059.

Estevinho BN, Rocha F. Application of biopolymers in microencapsulation processes. In: Biopolymers for Food Design. Amsterdam, The Netherlands: Elsevier Inc.; 2018. p. 191-222. ISBN 9780128114490.

Safdar R, Gnanasundaram N, Iyyasami R, Appusamy A, Papadimitriou S, Thanabalan M. Preparation, characterization and stability evaluation of ionic liquid blended chitosan tripolyphosphate microparticles. Journal of Drug Delivery Science and Technology. 2019;50:217-225.

Klein MP, Hackenhaar CR, Lorenzoni ASG, Rodrigues RC, Costa TMH, Ninow JL, Hertz PF. Chitosan crosslinked with genipin as support matrix for application in food process: Support characterization and β-D-galactosidase immobilization. Carbohydrate Polymers. 2016;137:184-190.

Mauricio-Sánchez RA, Salazar R, Luna-Bárcenas JG, Mendoza-Galván A. FTIR spectroscopy studies on the spontaneous neutralization of chitosan acetate films by moisture conditioning. Vibrational Spectroscopy. 2018;94:1-6.

Jayanudin, Fahrurrozi M, Wirawan SK, Rochmadi. Antioxidant activity and controlled release analysis of red ginger oleoresin (Zingiber officinale var. rubrum) encapsulated in chitosan cross-linked by glutaraldehyde saturated toluene. Sustainable Chemistry and Pharmacy. 2019;12:100132.

Published
2025-06-13
How to Cite
Cynthia Marisca Muntu, Jessica Clarissa Selan, & Sadono. (2025). Optimasi Laju Alir Pengeringan Semprot Mikropartikel Asiklovir dengan Kitosan dan Natrium Tripolifosfat . Keluwih: Jurnal Kesehatan Dan Kedokteran, 6(2). Retrieved from https://journal.ubaya.ac.id/index.php/kesdok/article/view/7410