Biokomposit Hidrogel dengan Ekstrak Centella asiatica sebagai Penutup Luka

  • Dominique Gian Leonardo Prodi Biologi, Fakultas Teknobiologi, Universitas Surabaya, Surabaya-Indonesia
  • Stephanie Singajaya Prodi Biologi, Fakultas Teknobiologi, Universitas Surabaya, Surabaya-Indonesia
  • Dinda Fluor Agustin Prodi Biologi, Fakultas Teknobiologi, Universitas Surabaya, Surabaya-Indonesia
  • Mariana Wahjudi Prodi Biologi, Fakultas Teknobiologi, Universitas Surabaya, Surabaya-Indonesia
Abstract Views: 650 times
PDF Downloads: 476 times
Keywords: biocomposite hydrogel, nata de coco, bacterial cellulose, gelatine, centella asiatica extract, wound dressing, hidrogel biokomposit, nata de coco, selulosa bakteri, gelatin, ekstrak centella asiatica, penutup luka

Abstract

AbstractWhen wounds occur on skin, cell regeneration and healing process will occur. Imperfect cell regeneration will end up leaving ugly scars. Any open wounds will have a high chance of being infected, further slowing the healing processes. The bacteria involved in wound infection are as follow: Pseudomonas aeruginosa, Escherichia coli and  Staphylococcus aureus. The usage of current medical adhesive to cover wound has many implications: cannot be used multiple times and untuk may end up resulting in MARSI (Medical Adhesive-Related Skin Injuries). To solve those problems, this research aims to find an alternative wound dressing that are able to solve the problems mentioned earlier. The synthesis of biocomposite hydrogel consists of bacterial cellulose mixed with gelatin with the crosslinker agent glutaraldehyde. The mixture is then given the wild herbs Centella asiatica extract as an active ingredient. It has been found that the best formulation consists of using 10% gelatine: bacterial cellulose paste with the ratio 200:1 with the total glutaraldehyde concentration of 1%. Furthermore, Centella asiatica 10% are not able to penetrate the human model skin, and did not exhibit any antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus.

Keywords: biocomposite hydrogel, nata de coco, bacterial cellulose, gelatine, centella asiatica extract, wound dressing

Abstrak—Ketika luka terjadi pada kulit, regenerasi sel dan proses penyembuhan akan terjadi. Regenerasi sel yang tidak sempurna dapat menghasilkan bekas luka yang kurang enak dipandang. Selain itu, luka terbuka berisiko terinfeksi oleh patogen sehingga penyembuhan akan terhambat. Bakteri yang berperan pada infeksi luka adalah Pseudomonas aeruginosa, Escherichia coli dan Staphylococcus aureus. Penggunaan medical adhesive untuk menutup luka punya banyak kekurangan yaitu penggunaannya tidak bisa dilakukan berulang dan dapat menyebabkan MARSI (Medical Adhesive-Related Skin Injuries), yaitu berbagai komplikasi dan luka pada kulit yang ditempeli dengan produk tersebut. Untuk mengatasi pemasalahan tersebut, penelitian ini bertujuan untuk mendapatkan alternatif penutup luka terbaru yang dapat mengatasi permasalahan yang telah disebutkan. Pembuatan hidrogel biokomposit terdiri dari selulosa bakteri yang direaksikan dengan gelatin menggunakan agen crosslinker glutaraldehida. Campuran kemudian ditambahkan  bahan aktif dari ekstrak tanaman liar Centella asiatica. Didapatkan formulasi terbaik menggunakan perbandingan 10% gelatin:pasta selulosa bakteri = 200:1 dengan konsentrasi total glutaraldehida sebanyak 1%. Selain itu, ekstrak Centella asiatica 10% juga tidak dapat mempenetrasi model kulit manusia, serta tidak memiliki aktivitas antibakteri baik pada Escherichia coli, Pseudomonas aeruginosa, dan Staphylococcus aureus.

Kata kunci: hidrogel biokomposit, nata de coco, selulosa bakteri, gelatin, ekstrak centella asiatica, penutup luka

Downloads

Download data is not yet available.

References

Bäckdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B., Risberg, B., et al. 2006. Mechanical Properties of Bacterial Cellulosa and Interactions with Smooth Muscle Cells. Biomaterials, 27, 2141-2149.

Bayat, A. 2003. Skin Scaring. BMJ , 326 (7380): 88-92.

Bian, D., Zhang, J., Wu, X., Dou, Y., Yang, Y., Tan, Q., et al. 2013. Asiatic Acid Isolated From Centella Asiatica Inhibits TGF-β1-induced Collagen Expression in Human Keloid Fibroblasts via PPAR-γ Activation. Int J Biol Sci. , 9 (10), 1032-1042.

Brinkhaus, B., Lindner, M., Schuppan, D., Hahn, E. G. 2000. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine, 7(5): 427-448.

Chawla, et al. 2009. Microbial Cellulose: Fermentative Production and Applications. Food Technol Biotechnol. , 47, 107-124.

Czaja, W., Krystynowicz, A., Bielecki, S., & Brownjr, R. 2006. Microbial Cellulose the Natural Power to Heal Wounds. Biomaterials , 27, 145-151.

Dai, T., Tanaka, M., Huang, Y.-Y., & Hamblin, M. R. 2011. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. National Institute of Health , 9 (7), 857-879.

Dash, R., Foston, M., & Ragauskas, A. 2013. Improving the Mechanical and Thermal Properties of Gelatin Hydrogels Cross-linked by Cellulose Nanowhiskers Carbohydrate. Polymer , 91, 638-645.

Devi, Namerirakpam Nirjanta & Femina Wahab. 2012. Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pasific Journal of Tropical Biomedicine, 2 (3): 1280-1284.

Farris, M. K., Petty, M., Hamilton, J., Walters, S.-A., & Flynn, M. A. 2015. Medical Adhesive-Related Skin Injury Medical Adhesive-Related Skin Injury Patients. J Wound Ostomy Continence Nurs. , 42 (6), 589-598.

Gad, G.F., El-Domany, R.A., Ashour, H.M. 2008. Antimicrobial susceptibility profile of Pseudomonas aeruginosa isolates in Egypt. The Journal of urology, 180(1), pp.176-181.

Gatenholm, P., & Klemm, D. 2010. Bacterial Nanocellulose as a Renewable Material for Biomedical Applications. MRS Bull , 35, 208-213.

Guo, S., & DiPietro, L. A. 2010. Factors Affecting Wound Healing. J Dent Res. , 89(3):219- 229.

Kormin, Saniah. 2005. The effect of heat processing on triterpene glycosides and antioxidant activity of herbal pegaga (Centella asiatica l. Urban) drink. Master thesis, Universiti Teknologi Malaysia, Malaysia.

Lalitha, V., Kiran, B., & Raveesha, K. A. 2013. Antibacterial and Antifungal Activity of Aqueous Extract of Centella Asiatica L. Against Some Important Fungal and Bacterial Species. World Journal of Pharmacy and Pharmaceutical Sciences, 2 (6), 4744-4752.

Maramaldi, Giada, Togni, Stefano, Franceschi, Frederico, Lati, Elian. (2013). Anti-inflammaging and antiglycation activity of a novel botanical ingredient from African biodiversity (Centevita™). Clinical, Cosmetic and Investigational Dermatology, 7, pp. 1-9.

Mendes, P. N., Rahal, S., Pereira-Junior, O. P., Fabris, V. E., Lenharo, S. L., de LimaNeto, J. F., et al. 2009. In vivo and in vitro evaluation of anacetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair. Acta Vet. Scand. , 51, 12.

McCaig, L. F., McDonald, L. C., Mandal, S., & Jernigan, D. B. 2006. Staphylococcus aureus–associated Skin and Soft Tissue Infections in Ambulatory Care. Emerging Infectious Diseases , 12, 1715-1723.

Ovington, L. 2003. Bacterial Toxins and Wound Healing. Ostommy/Wound Management , 49 (Suppl 7A), 8-12.

Sen, C. K., Gordillo, G. M., Roy, S., Kirsner, R., Lambert, L., Hunt, T. K., et al. 2009.Human skin wounds: A major and snowballing threat to public. Wound Repair and Regeneration, 17 (6):763-771.

Simon, Alice, Amaro, Maria Inês, Healy, Anne Marie, Cabral, Lucio Mendes, de Sousa, Valeria Pereira. 2016.Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation. International Journal of Pharmaceutics, 512(1), pp. 234-241.

Sivanmaliappan, T.S., Sevanan, M., 2011. Antimicrobial susceptibility patterns of Pseudomonas aeruginosa from diabetes patients with foot ulcers. International journal of microbiology, 2011.

Somboonwong, J., Kankaisre, M., Tantisira, B., & Tantisira, M. H. 2012. Centella asiatica in incision and burn wound models: an experimental animal study. BMC Complement Altern Med. , 12, 103.

Somchit, M. N., Sulaiman, M. R., Zuraini, A., Samsuddin, L., Somchit, N., Israf, D. A., et al. 2004. Antinociceptive and antiinflammatory effects of Centella asiatica. Indian J Pharmacol , 36 (6), 377-380.

Torres, S F. G., Commeaux, S., & Troncoso, O. P. 2012. Biocompability of Bacterial Cellulose Based Biomaterials. J. Funct. Biomater, 3, 864-878.

Treesuppharat, W., Rojanapanthu, P., Siangsanoh, C., Manuspiya, H., & Ummartyotin, S. 2017. Synthesis and characterization of bacterial cellulose and gelatin-based. Biotechnology Reports (15), 84–91.

Ullah, H., Santos, H. A., & Khan, T. 2016. Applications of Bacterial Cellulose In Food, Cosmetics, and Drug Delivery. Cellulose , 23 (4), 2291-2314.

Published
2022-02-28
How to Cite
Dominique Gian Leonardo, Stephanie Singajaya, Dinda Fluor Agustin, & Mariana Wahjudi. (2022). Biokomposit Hidrogel dengan Ekstrak Centella asiatica sebagai Penutup Luka. Keluwih: Jurnal Sains Dan Teknologi, 3(1), 1-9. https://doi.org/10.24123/saintek.v3i1.4907